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ABSTRACT

This study presents various statistical methods for exploring and summarizing spatial extremal properties
in large gridpoint datasets. Extremal properties are inferred from the subset of gridpoint values that exceed
sufficiently high, time-varying thresholds. A simple approach is presented for how to choose the thresholds
so as to avoid sampling biases from nonstationary differential trends within the annual cycle. The excesses
are summarized by estimating parameters of a flexible generalized Pareto model that can account for
spatial and temporal variation in the excess distributions. The effect of potentially explanatory factors (e.g.,
ENSO) on the distribution of extremes can be easily investigated using this model. Smooth spatially pooled
estimates are obtained by fitting the model over neighboring grid points while accounting for possible
spatial variation across these points. Extreme value theory methods are also presented for how to inves-
tigate the temporal clustering and spatial dependency (teleconnections) of extremes. The methods are
illustrated using Northern Hemisphere monthly mean gridded temperatures for June–August (JJA) sum-
mers from 1870 to 2005.

1. Introduction

Several different descriptive statistical methods have
been found to be useful in climate science for exploring
and summarizing the bulk statistical properties of vari-
ables at many different spatial locations (e.g., gridpoint
datasets). For example, spatial dependencies, telecon-
nections, are often investigated using correlation maps
obtained by calculating the correlation between the
variable at one grid point and the variable at all other
grid points. By ignoring spatial location and treating the
set of gridpoint variables as a high-dimensional vector,
it is possible to use multivariate techniques to summa-

rize gridpoint datasets. For example, principal compo-
nent (empirical orthogonal function) analysis is widely
used as a data-reduction technique to isolate leading
spatial patterns (the principal component loading
weights) that account for maximal variance (Hannachi
et al. 2007).

Such approaches are appropriate for summarizing
the bulk statistical properties of the whole distribution
such as the variance and covariance structure, but are
not ideally suited for exploring extremal properties in
the tails of the distribution. Because of the potential
impact of events having large values of meteorological
variables (e.g., heat waves caused by large surface tem-
peratures), there is a growing need for statistical meth-
ods suitable for exploring extremal properties in grid-
point datasets. Such methods can help address such im-
portant questions as follows:

• How does the probability distribution of extreme in-
tensity vary spatially?
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• How does the probability distribution of extreme in-
tensity depend on time-varying factors such as natu-
ral modes of variability [e.g., ENSO and the North
Atlantic Oscillation (NAO)] and long-term climate
change?

• How do extremes cluster in time at different loca-
tions?

• How are extremes at one location related to extremes
at another location?

This study presents various extreme value theory
(EVT) methods that we believe could be useful for
addressing such questions when using large gridpoint
datasets. Our approach uses values above large time-
varying thresholds to infer properties about extremal
behavior in the tail of the distribution. Rather than use
sample statistics (e.g., extreme indices statistics) or
models fitted separately at each grid point, we present
a flexible EVT model that can include explanatory vari-
ables to account for spatial and temporal variation in
the tail of the distribution. Smooth estimates are ob-
tained by fitting the model over neighboring grid points
while accounting for possible spatial variation across
these points (spatial pooling). A simple approach is
presented for how to choose the thresholds so as to
avoid biases from seasonal and long-term nonstation-
arity in the gridpoint time series.

The paper is structured as follows. Section 2 presents
a brief summary of the main concepts in EVT and re-
views its use in climate science. Section 3 describes the
Northern Hemisphere monthly mean temperature
dataset used in this study that was motivated by the
need to better understand large-scale heat waves such
as the European heat wave of 2003. Section 4 discusses
various methods for how to select large values and then
shows how to choose a threshold that can avoid sam-
pling biases caused by seasonal and long-term nonsta-
tionarity in the time series. Section 5 presents a spatial
EVT model and demonstrates how it can be used to
summarize the extremal properties of the temperature
data. Section 6 shows how time-varying explanatory
variables can be easily included into the spatial model
to account for how extreme temperatures may depend
on factors such as ENSO. Section 7 investigates tem-
poral clustering and teleconnections of extremes. Sec-
tion 8 concludes the paper with a summary of the main
findings and suggestions for future research.

2. Extreme value theory and its use in climate
science

EVT is the branch of probability theory and statisti-
cal science that deals with modeling and inference for
extreme values (Coles 2001). EVT methods generally

use a subset of large values from the data sample to
infer the extreme behavior of the underlying process
that generated the data. The inference relies on models
for the tails of distributions derived from asymptotic
limit theorems and certain regularity assumptions
about the distributional tails. Empirical checks and
physical arguments should be used to justify the appli-
cation of such models (e.g., Ferro 2007). Large values
are selected in various ways, for example, block
maxima (e.g., annual maxima), the r-largest values
(e.g., the five largest events in the year), or peaks over
threshold (e.g., exceedances above a predefined thresh-
old). The large values are used to infer behavior about
the tail of the distribution rather than provide an abso-
lute binary definition of what is an extreme event. Ex-
tremeness is a relative concept not an absolute di-
chotomy.

Only a few published studies have analyzed extreme
weather in gridded datasets using EVT. The most com-
mon practice based on EVT consists in individually fit-
ting the generalized extreme value (GEV) distribution
to samples of annual maximum daily surface tempera-
ture, precipitation, and near-surface wind speed at each
grid point of reanalysis data, model simulations, and
also for station data (e.g., Zwiers and Kharin 1998;
Kharin and Zwiers 2000, 2005; van den Brink et al.
2004; Fowler et al. 2005; Kharin et al. 2005). These
studies analyzed maps of changes over time in the es-
timated GEV parameters and also maps of return val-
ues (e.g., a 20-yr return value is exceeded once every 20
yr on average). Naveau et al. (2005) fitted the GP dis-
tribution to daily temperature and precipitation climate
model simulations and examined changes in 30-yr re-
turn values over the Euro–Atlantic sector induced by
changes in the intensity of the thermohaline circulation.

Other statistical methods are also used to investigate
climate and weather extremes in the climate literature.
Shabbar and Bonsal (2004) used maximum covariance
analysis (also known as singular value decomposition)
to investigate the relationship between low-frequency
climate variability [e.g., ENSO, the Arctic Oscillation
(AO), and the quasi-biennial oscillation (QBO)] and
the occurrence of hot and cold extreme daily tempera-
tures in Canada. Ferro et al. (2005) discussed methods
for relating temperature and precipitation extremes to
the center of the distribution. Beniston et al. (2007)
presented diagnostic methods to determine how heat
waves, heavy precipitation, droughts, wind storms, and
storm surges change between 1961–90 and 2071–2100 in
the European Union-Prediction of Regional Scenarios
and Uncertainties for Defining Climate Change Risks
and Effects (EU-PRUDENCE) project regional model
simulations. Other examples can be found in the special
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issue of Global and Planetary Change (2004, Vol. 44)
devoted to extreme climate events.

3. Heat waves in the Northern Hemisphere

Over 20 000 people are believed to have lost their
lives during the summer of 2003 because of the persis-
tently hot conditions over Europe (Beniston and Diaz
2004; Beniston 2004; Meehl and Tebaldi 2004; Schär et
al. 2004). The event has been attributed to anthropo-
genic climate change (Stott et al. 2004) and such events
are expected to become more frequent and more in-
tense in the future because of climate change (Beniston
et al. 2006). There is therefore a pressing need to better
understand extreme behavior in surface temperature.

Such heat wave events are the result of persistent
blocking conditions and so leave a clear signature in
monthly mean temperatures. Therefore, we will illus-
trate our methods here by applying them to long his-
torical series of observed monthly mean temperatures.
This study uses monthly mean gridded surface tempera-
ture anomaly data from the Hadley Centre Climatic
Research Unit Temperature version 2 (HadCRUT2v;
Jones and Moberg 2003; Rayner et al. 2003). (These
data are available online at http://www.cru.uea.ac.uk/
cru/data/tem2/.) The dataset contains combined land
and marine monthly mean analysis of surface tempera-
ture anomalies from January 1870 to December 2005 in
a regular 5° � 5° global grid. This is one of the best
datasets with long time coverage (136 yr) available for
climate research. Such a long time series is appropriate

for the investigation of extremes because it contains a
large number of episodes, which allows a proper inves-
tigation of the tails of temperature distributions. Note,
however, that not all grid points have full-time cover-
age. Mainly Europe, North America, and the North
Atlantic region have data covering most of the period
during 1870–2005. For the analysis presented in the fol-
lowing sections only grid points with fewer than 50% of
values missing (i.e., with at least 68 yr of available data)
are used. It is worth noting that gridpoint values have
different sampling uncertainties depending upon the
number of meteorological data stations available, and
sampling uncertainties can vary over time. Anomalies
in the original dataset are expressed with respect to the
1961–90 period. To obtain the time series of actual tem-
peratures at each grid point before performing the
analysis, the climatological monthly means for the pe-
riod 1961–90—also provided by the Climatic Research
Unit (CRU)—are added to the anomaly temperature
series.

Figure 1 shows summer (June–August) monthly
mean temperatures (T) at a grid point in central Eu-
rope (47.5°N, 12.5°E), which was chosen arbitrarily for
illustrative purposes. Each of the ns � 408 vertical bars
indicates the monthly mean for a particular summer
month. August 2003 and August 1983 stand out as the
first and the second hottest observed monthly mean
values.

Figure 2 shows the first three sample moments of the
distribution of summer temperatures. The median T0.5

FIG. 1. Summer (June–August) monthly mean temperatures T (°C) from 1870 to 2005 at a grid point
in central Europe (47.5°N, 12.5°E). Each of the ns � 408 vertical bar is the monthly mean for a particular
summer month. The horizontal solid line is the long-term (1870–2005) summer monthly mean tempera-
ture of 15.2°C. The horizontal dashed line is the 95th quantile of summer monthly mean temperatures
of 17.5°C.
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(Fig. 2a) is a measure of location. The interquartile
range T0.75–T0.25 (Fig. 2b) is a measure of variability,
where T0.75 and T0.25 are the upper and lower quartiles,
respectively. The Yule–Kendall skewness � (Fig. 2c) is
a measure of asymmetry of the distribution and is de-
fined as

� �
T0.25 � 2T0.5 � T0.75

T0.75 � T0.25
. �1�

Summer temperatures in the tropics are higher (Fig.
2a) and less variable (Fig. 2b) than in the extratropics.
The larger temperature variability in extratropical re-
gions compared to tropical regions is due to mixing
processes such as baroclinic instability. Regions of
maximum temperature variability over the western At-
lantic and Pacific Oceans (Fig. 2b) coincide with the
genesis regions of the storm tracks.

Figure 2c shows that large parts of both Asia and the

FIG. 2. (a) Median (T0.5), (b) interquartile range, and (c) Yule–Kendall skewness sta-
tistics (�), of monthly mean summer temperatures estimated over the 1870–2005 period.
White shading signifies missing values.
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tropics have a positively skewed distribution (i.e., dis-
tribution with longer tail toward higher temperatures)
indicating higher frequency of very high temperatures
in these regions when compared to other regions. West
of North America, southern Europe, and the Atlantic
sector have a negatively skewed distribution (i.e., dis-
tribution with longer cold tail) indicating higher fre-
quency of very low temperatures in these regions when
compared to other regions. The most common process
generally responsible for high temperatures in extra-
tropical regions is atmospheric blocking (Rex 1950).
The connection between atmospheric blocking and
high temperatures will be further discussed in sections
5b and 5d.

4. How to select the large values: Time-varying
thresholds

There are various EVT approaches for selecting a
subset of large values from the data sample to infer the
extreme behavior of the underlying process that gener-
ated the data (Coles 2001).

One of the simplest yet least robust ways is to select
the largest maximum value from the sample. For ex-
ample, Fig. 3 shows the maximum values of summer
monthly mean temperatures. The spatial pattern
broadly resembles the mean temperature pattern (Fig.
2a) with higher temperatures in tropical regions and
lower temperatures in extratropical regions. The largest
values are observed in arid tropical regions in North
Africa, the Middle East, India, and central North
America where the lack of precipitation results in sur-
face dryness and consequently high temperatures. The
maximum value is based on only one value from the
sample and so is not a generally reliable summary sta-
tistic. It is nonresistant to outliers (e.g., a single erro-
neously high temperature measurement).

Alternatively, one could define blocks of data (e.g., a
year or a decade) and select the largest (or the r largest)
values of each block, and then estimate parameters of
the GEV distribution based on the selected sample val-
ues (Coles 2001). However, one should be careful about
how to choose blocks. For monthly mean temperatures,
the block maxima approach using, for example, annual
blocks is not appropriate because the blocks are not
large enough (only 12 values are available for each
year) for the asymptotic properties that give rise to the
GEV distribution to provide a close approximation.
For monthly mean temperatures a larger block (e.g., a
few decades) would be required, and would therefore
substantially reduce the sample size for the estimation
of GEV distribution parameters. The annual block
maxima approach, however, could be appropriate for
daily temperatures that have a larger block size of 365
values per year (Zwiers and Kharin 1998; Kharin and
Zwiers 2000, 2005).

Rather than use only the largest values in blocks, the
peaks-over-threshold approach considers all sample
values that exceed a suitably high predefined threshold
u (see Coles 2001, chapter 4). For example, all the ex-
ceedances T � u0.95 above the 95th quantile u0.95 �
17.5°C (dashed line) of summer temperatures are
shown in Fig. 1. This quantile illustrates extremes that
recur on average once every 20 yr. The probability dis-
tribution of the excesses T–u can then be modeled using
smooth tail distributions such as the generalized
Pareto (GP) distribution (see section 5). The theoreti-
cal tail distribution allows one to smoothly interpolate
and extrapolate return probabilities for events having
amplitudes above the threshold. The choice of thresh-
old is often a compromise between having large enough
values to represent events in the tail of the distribution,
yet also having a sufficient number of exceedance

FIG. 3. Maxima of monthly mean summer temperatures over the 1870–2005 period.
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events to obtain reliable fits. Therefore, exceedances
above the threshold do not always have to be far out in
the tail of the distribution and so should not be uncriti-
cally referred to as simple extreme events or extreme
indices as is often the case in the climate literature (e.g.,
Houghton et al. 2001). In other words, moderately rare
events can sometimes be useful to make inference
about extreme behavior. Exceedance above a threshold
does not define an extreme event—it defines a value
that can be used to infer the properties of the whole
continuum of events having large values.

For nonstationary processes, it is necessary to con-
sider time-varying thresholds in order to avoid sam-
pling biases. For example, the use of a fixed (constant)
threshold for monthly temperatures with a warming
trend will oversample warmer periods (e.g., summer
and the latter part of the record) compared to other
periods in the record. Furthermore, warm-period ex-
ceedances above a fixed threshold may no longer be
even in the tail of the distribution, which will lead to
systematic biases when estimating tail distributions. It is
therefore necessary to consider using time-varying
thresholds that are able to account for seasonal and
long-term variations when investigating extreme behav-
ior in climatic datasets. The possibility of using time-
varying thresholds makes the peak-over-threshold ap-
proach more readily able to accommodate nonstation-
arities than the block maxima approach. We recognize
that although the block maxima approach cannot rep-
resent nonstationarity within blocks, it is perfectly
straightforward to represent nonstationarity between
blocks. It is important to note, however, that for some
practical applications (e.g., human health or ecosys-
tems) it may be important to consider exceedances
above a fixed threshold. For these applications, trends
in the occurrence of extreme events so defined are an
important part of the signal.

Note that the use of a time-varying threshold should
not be confused with whether or not the distribution of
the excesses varies in time. To account for time varia-
tion in the excess distribution one also needs to allow
the GP distribution parameters to depend on covariates
such as calendar month, year, etc. (Davison and Smith
1990). However, it is quite possible to have excesses
above a time-varying threshold that have constant-in-
time probability distribution. The threshold may also
be allowed to vary with covariates other than time,
which may yield a more accurate and meaningful de-
scription of the data in specific applications. Such a
generalization was uninformative for our data.

This study will investigate the distribution of excesses
above a time-varying threshold designed to ensure the
following: 1) an approximately constant exceedance

frequency, 2) that analysis is not biased toward the
warmer climate of the end of the twentieth century, and
3) that excesses are yielded relative to contemporary
climate, and are therefore designed to reflect effects of
similar physical processes at all times. The time-varying
threshold uy,m � Ly,m� 	 in year y and calendar month
m is considered to be the sum of a long-term trend Ly,m

and a positive constant 	, that is adjusted so as to have

 % of the observed values above uy,m. The long-term
trend Ly,m, models the effect of global warming and
decadal variability and is distinct for each month m to
account for differential trends within the the annual
cycle. Here Ly,m is estimated with a local polynomial fit
with sliding window of 20 yr. The constant 	 is obtained
empirically by lifting Ly,m up until 
% of the observed
values are above uy,m. Appendix A describes the pro-
cedure for obtaining 	.

The time-varying threshold is illustrated in Fig. 4,
which shows the observed monthly mean temperatures
Ty,m (black dots) for June (Fig. 4a), July (Fig. 4b), and
August (Fig. 4c) for the grid point in central Europe
(47.5°N, 12.5°E) from 1870 to 2005. The solid lines in
Figs. 4a–c are the long-term trends Ly,m. The dashed
lines are the thresholds uy,m � Ly,m � 	 obtained by
adding the constant 	 to Ly,m (solid lines) so as to have

 � 5% of the observed values above uy,m. The thresh-
old uy,m with 
 � 5% is hereafter referred to as the 95%
threshold. A constant fairly stable frequency of exceed-
ances (i.e., events Ty,m � uy,m, when black dots are
above the dashed lines) is noted throughout the whole
1870–2005 period in Figs. 4a–c. The largest values are
observed during June (Fig. 4a) and August (Fig. 4c)
2003. The summer of 2003 also stands out in Fig. 4d,
which shows summer excesses Ty,m – uy,m above the
95% threshold uy,m (vertical bars above the horizontal
line) for the same grid point. The 95% threshold has
been used for all results to be presented in sections 5
and 6. Section 5c provides additional justification on
why the use of the 95% threshold is appropriate, rep-
resenting an acceptable balance between large enough
values and a sufficient number of exceedances to obtain
reliable GP distribution fits.

When a constant threshold u is chosen for each grid
point it is possible to plot a single map of the threshold.
However, when a time-varying threshold such as uy,m is
used, multiple maps of the threshold need to be exam-
ined. To illustrate the typical threshold value at each
grid point, Fig. 5 shows the long-term time mean of the
95% threshold uy,m for the summer months over the
period from 1870 to 2005. It has a broadly similar pat-
tern to Figs. 2a and 3 with larger values observed in arid
regions of North Africa and part of the Middle East.
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Excesses Ty,m – uy,m for the exceedance events where
Ty,m � uy,m can be used to provide distribution sum-
maries of events having large values. Figure 6 shows the
sample time median (Fig. 6a) and interquartile range
(Fig. 6b, i.e., measure of variability) of the excesses.
Large median and interquartile range of excesses are
observed in colder and more variable extratropical

regions than in tropical regions, except the tropical
Pacific, which also has large values due to the mani-
festation of ENSO. There are much higher values of
median and interquartile range of excesses over ex-
tratropical land areas than over most oceanic and
tropical regions. This contrast indicates that monthly
temperature excesses are on average larger and have

FIG. 4. Observed 1870–2005 monthly mean temperatures Ty,m (black dots) for the grid point in central
Europe (47.5°N, 12.5°E) during (a) June, (b) July, and (c) August. The solid curves are the long-term
trends (Ly,m) that represent decadal variability. The dashed lines are the time-varying threshold uy,m

given by uy,m � Ly,m � 	, estimated for each summer month individually, where 	 is the increment
necessary to have 
 � 5% of the observed values above uy,m. (d) Summer month differences between
Ty,m and uy,m (95% time-varying threshold) for the grid point in central Europe (47.5°N, 12.5°E).
Vertical bars above the horizontal solid line (zero line) are excesses Ty,m – uy,m above the threshold uy,m.
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larger variability over extratropical continental areas
than over most oceanic and tropical regions. One
possible reason for the larger excesses over extratrop-
ical land regions could be the much smaller heat capac-
ity of land compared to the oceans (Peixoto and Oort
1993).

5. Spatial GP distribution model for high
exceedances

a. Peaks-over-threshold spatial pooling

This section illustrates how peaks over threshold can
be used to investigate the upper tail of temperature

FIG. 6. (a) Median and (b) interquartile range of excesses above the 95% time-varying
threshold uy,m.

FIG. 5. Time mean of the 95% threshold uy,m for the summer months over the period
1870–2005.
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distributions. In the asymptotic limit for sufficiently
large thresholds, the distribution of excesses Z � Ty,m –
uy,m conditional on Ty,m � uy,m can be shown to ap-
proximate the GP distribution function

Pr�Z � z� � H�z� � 1 � �1 �
�z

� ���1���

, �2�

which is defined for z � 0 and 1 � � z/� � 0, where
� � 0 is the scale parameter and � is the shape param-
eter of the distribution. The mean, median, variance,
and interquartile range of Z are, respectively,

E�Z� �
�

1 � �
, �3�

Med�Z� �
��2� � 1�

�
, �4�

Var�Z� �
�2

�1 � ��2�1 � 2��
, �5�

IQR�Z� �
4���1 � 3���

�
. �6�

For the examples presented in this study the GP dis-
tribution parameters are estimated using maximum-
likelihood methods (Coles 2001, section 2.6.3). To pre-
serve the smooth nature of temperature fields a spatial
pooling approach is applied for the estimation of these
parameters (see spatial model in appendix B). The
scale and shape parameters, �os and �os, at a grid point,
s, of interest are estimated using excesses from both
grid point s and grid points in a neighborhood of s. This
is achieved by modeling the scale parameter as a bilin-
ear function of the distance between grid points, and
constraining the shape parameter to be constant over
the neighborhood.

b. Spatial patterns of GP distribution parameters

This section presents maps of GP distribution param-
eters estimated with the spatial model of appendix B.
Because of the logarithmic link function in the scale
parameter Eqs. (B1) and (B2) the quantity e�os needs to
be examined. Figure 7a shows estimates of e�os for sum-
mer monthly mean temperature excesses Ty,m – uy,m.
The scale parameter provides information about the
variability (or volatility) of the excesses. Regions with
larger values of e�os have higher variability of large tem-
perature values. In accordance with the interquartile
range (i.e., variance) of excesses shown in Fig. 6b,
higher variability of large temperature values (i.e., large
e�os) is found over the tropical Pacific and extratropical
continental areas when compared to other oceanic and
tropical regions. Note also that the scale parameter pat-

tern (Fig. 7a) is similar to the median of excesses (Fig.
6a). This similarity is noted because the median of ex-
cesses in (4) is proportional to the scale parameter �.
The maximum variability of large temperature values is
observed over extratropical continental Europe and
Asia and coincides with the region where atmospheric
blocking is typically observed during the summer
(Black et al. 2004). We hypothesize that atmospheric
blocking is a potential process likely to increase tem-
perature values over Europe and Asia. Shorter persis-
tence (less than 10 days) of anticyclonic (high pressure)
conditions in association with warm air advection from
North Africa can contribute to increasing the variability
of large temperature values over Europe (Nakamura et
al. 2005).

Figure 7b shows estimates of the shape parameter �os

for summer monthly mean temperature excesses Ty,m –
uy,m. The shape parameter tells us about the form (or
fatness) of the tail of the distribution of excesses. The
tail of the distribution of excesses in regions with a
smaller shape parameter is thinner than in regions with
a larger shape parameter. Shape parameter values be-
low zero indicate that the distribution has an upper
bound (Coles 2001). Shape parameter values above or
equal to zero indicate that the distribution is un-
bounded (i.e., it has an infinite upper tail). Figure 7b
shows that most regions have negative shape parameter
and hence have an upper-bound excess value equal to
�e�os/�os from the GP distribution fit. Continental re-
gions (e.g., North America and Asia) have smaller
shape parameters than oceanic regions. Figure 7c shows
the upper bound of excesses. Regions where no bound
is estimated are shaded in black. Larger upper bounds
of excesses (between 3° and 6°C) are found in extra-
tropical continental areas (e.g., central North America,
most of Europe, and northwest Asia), indicating that
excesses over 3°C can be observed in these regions.

To illustrate typical uncertainties on the estimated
parameters and in the upper bounds of excesses we
report in Table 1 confidence intervals obtained with a
bootstrap resampling procedure (Davison and Hinkley
1997) for three grid points, one over North America
(47.5°N, 92.5°W), one over central Europe (47.5°N,
12.5°E), and the other over equatorial Africa (12.5°N,
7.5°W). For the first two grid points the sign of the
shape parameter is negative and the 90% confidence
intervals also lie below zero, supporting the existence of
upper bounds for the temperature distributions at these
two grid points. For the third grid point the shape pa-
rameter is positive suggesting the nonexistence of an
upper bound. However, the 90% confidence interval
for this grid point ranges from negative to positive val-
ues, indicating uncertainty regarding the existence or
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FIG. 7. Summer monthly mean temperature GP (a) scale parameter e�os, (b) shape
parameter �os, and (c) upper bound �e�os/�os of excess Ty,m – uy,m above the 95% time-
varying threshold uy,m. Grid points with �os � 0 have an estimated infinite upper bound and
are shaded in black.

TABLE 1. Estimates of scale (e�os), shape (�os), and upper bound (–e�os/�os) of excesses above the 95% time-varying threshold �e�os/�os

for three grid points: one over North America (47.5°N, 92.5°W), one over central Europe (47.5°N, 12.5°E), and the other over
equatorial Africa (12.5°N, 7.5°W). Values in parentheses are the limits of the 90% confidence intervals estimated using a bootstrap
resampling procedure.

North America Central Europe Equatorial Africa

e�os 0.57 (0.49, 0.70) 0.55 (0.47, 0.67) 0.24 (0.19, 0.30)
�os �0.14 (�0.31, �0.06) �0.13 (�0.32, �0.03) 0.06 (�0.17, 0.20)
–e�os/�os (°C) 4.2 (2.1, 9.0) 4.2 (2.0, 16.1)  (1.36, )
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nonexistence of an upper bound. This uncertainty is
also reflected in the 90% confidence interval of the
upper bound that ranges from 1.36°C to infinity. Fig-
ures presented in Table 1 suggest that the existence of
an upper bound is a more conclusive result than the
nonexistence of an upper bound. Grid points in Fig. 7c
with an upper bound larger than 12°C should therefore
be interpreted with caution.

c. Goodness of fit and threshold empirical check

When dealing with parametric distributions such as
the GP it is always good practice to examine how
well they fit the data. The goodness of fit can be exam-
ined using the Anderson–Darling (AD), Kolmogorov–
Smirnov (KS), and Cramér–von Mises (CvM) test sta-
tistics (Choulakian and Stephens 2001). For this par-
ticular application these are all tests of the null
hypothesis that the true distribution function of tem-
perature excesses is a GP distribution. It is also advis-
able to examine if the chosen threshold is high enough
so that the assumption of excesses above a sufficiently
large threshold approximating a GP distribution is re-
spected. One should critically examine whether the
95% threshold choice is high enough to satisfy this as-
sumption.

Figure 8 shows the percentage of grid points with

AD, KS, and CvM p values less than or equal to p for
each p between 0 and 1 for two choices of time-varying
thresholds: 95% and 75%. The p-values are computed
by bootstrap resampling as in Kharin and Zwiers
(2000). If the true distribution function is GP, then the
expected percentage of grid points with the p-value less
than or equal to p should equal p with all points falling
on the diagonal line. All curves for the 95% threshold
are close to the diagonal line, indicating that the quality
of the fit is good. For thresholds lower than 95% the
curves fall on the left-hand side and far from the diago-
nal line as illustrated in Fig. 8 for the 75% threshold.
This indicates that the GP distribution does not fit well
to the data at the 75% threshold, and the assumption of
a sufficiently high threshold is not valid for thresholds
lower than 95%.

d. Excesses and return periods for August 2003

Figure 9a shows excesses during August 2003, the
hottest ever recorded monthly mean temperature in
central Europe (Figs. 1 and 4c). Excesses of nearly 2°C
are observed in central Europe. This event has been
linked to the occurrence of atmospheric blocking in
central Europe (Beniston and Diaz 2004; Black et al.
2004). The persistence of anticyclonic (high pressure)
conditions over Europe during the summer of 2003 re-
sulted in cloudiness reduction, increased surface sen-
sible heat fluxes into the atmosphere, and reduced sur-
face latent heat fluxes (Black et al. 2004; Zaitchik et al.
2006). The lack of precipitation observed in many parts
of western and central Europe during this event re-
duced soil moisture, surface evaporation, and evapo-
transpiration (Beniston and Diaz 2004). Such a reduc-
tion in moisture availability combined with the increase
in sensible heat fluxes from the hot land surface con-
tributed to increased temperatures locally.

Figure 9b shows the GP distribution return period
estimates [1–H(z)]�1 for the August 2003 excesses in
Fig. 9a with scale and shape parameter estimates of
Figs. 7a and 7b, respectively. The return period is the
frequency with which one would expect, on average, a
given value (e.g., an excess z of 2°C) to recur. Some grid
points over Europe have a return period between 5 and
10 yr, others between 10 and 50 yr and some between 50
and 100 yr. For example, the return period for the grid
point in central Europe (47.5°N, 12.5°E) is 61.2 yr with
a 90% confidence interval of 39.1, 860.2 yr estimated
using a bootstrap resampling procedure (Davison and
Hinkley 1997). The immediate left neighbor grid point
(47.5°N, 7.5°E) has a return period of 90.6 yr with a
90% confidence interval of 52.0, 3429.9 yr. The imme-
diate right neighbor grid point (47.5°N, 17.5°E) has a
return period of 6.5 yr with a 90% confidence interval

FIG. 8. Percentage of grid points with AD (dotted lines), KS
(dashed lines), and CvM (solid lines) test statistics probability
value (p value) less than or equal to p (a probability value be-
tween 0 and 1) for two choices of time-varying thresholds: 75%
(gray curves) and 95% (black curves) of the summer values falling
below the threshold.
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of 5.2, 8.7 yr. These return periods are based on the
probability of observing a large excess given that the
95% threshold is exceeded. If we multiply our return
period estimates by 20 (i.e., 1 over the probability of
exceeding the 95% threshold) we can then compare our
return period estimates with the return period of 46 000
yr over Switzerland obtained by Schär et al. (2004) us-
ing a normal (Gaussian) distribution fitted to the mean
June–August temperature during 1990–2002. Our re-
turn period estimates are much smaller than the value
obtained by Schär et al. (2004).

6. Dependence of extremes on time-varying
factors

The dependence of extreme temperatures on factors
such as time and ENSO can be easily examined by
modeling the shape and scale parameters of the GP
distribution as functions of these factors. One can think
of this is as a regression model for extremes in which

the distribution of the response variable (e.g., the ex-
ceedance above a high threshold) is a parametric func-
tion of the explanatory variables. The idea of making
extreme value distribution parameters dependent upon
explanatory variables has previously been used by
Coles (2001), Nogaj et al. (2006), Brown et al. (2008),
among others. Here we further develop this idea using
a model that attempts to preserve the spatial smooth-
ness of the temperature fields (see appendix B for ad-
ditional information about this spatial model).

For example, if one is interested in how the variabil-
ity of summer temperature excesses is related to ENSO,
the following model could be used for scale and shape:

log� � �0 � �1x, �7�

� � �0, �8�

where x is an ENSO index such as the Southern Oscil-
lation index (SOI). Note that in (7) the logarithm of �

FIG. 9. (a) Excesses Ty,m – uy,m above the 95% threshold uy,m during August 2003 (i.e.,
Ty,m – uy,m when Ty,m � uy,m). (b) Return period estimates for the August 2003 excesses
using the GP distribution with the scale and shape parameters estimates of Figs. 7a and 7b,
respectively.
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is used instead of � to ensure that � � e(�0��1x) is posi-
tive for all choices of parameter values �0 and �1. Ap-
pendix B describes how a spatial pooling approach that
uses data from neighboring grid points r in addition to
data of the grid point of interest s to estimate the GP
distribution parameters �0, �1, and �0 is applied using
maximum-likelihood methods (Coles 2001). This ap-
proach models �0 and �1 as bilinear functions of the
distance between the neighboring grid points r and the
grid point of interest s.

The appropriateness of the nonstationary spatial
model given by (B1) can be tested by performing a
likelihood ratio test (Coles 2001, section 2.6.6). The
model of (B1) is tested against a simpler nested model
given by log �r � �0r and �r � �0r. The need for the
extra parameter �1r is tested by the null hypothesis Ho:
�1r � 0 against the alternative hypothesis H1: �1r � 0.
For example, the model with a SOI-dependent scale
parameter is deemed to be a significantly better de-
scription of the data than the same model with a SOI-
invariant scale parameter if the deviance between the
models exceeds the upper 5% quantile of the chi-
squared distribution with one degree of freedom (Coles
2001, section 2.6.6).

Figure 10 shows the map of p-values for the hypoth-
esis test above, where x is the SOI obtained from the
Climate Prediction Center (more information available
online at http://www.cpc.noaa.gov/data/indices/). The
null hypothesis cannot be rejected at the 5% signifi-
cance level over regions where p-values are greater
than 0.05. This indicates that over oceanic regions such
as the Atlantic, Indian Ocean, and subtropical Pacific
the simple model with constant shape and scale param-
eters is enough to fit the excesses above the 95% time-
varying threshold. There is therefore no advantage to

using the SOI factor to model large temperature values
over these regions. On the other hand, Fig. 10 shows
that over the tropical Pacific and extratropical conti-
nental regions in southeast North America, east Eu-
rope, Scandinavia, and northwest Asia p-values are less
than 0.05. Over these regions the null hypothesis can be
rejected at the 5% significance level in favor of the
alternative hypothesis. These results suggest that SOI is
a statistically significant factor for modulating high tem-
perature variability over the tropical Pacific and these
extratropical continental regions. In other words, the
variability of large temperature values over these ex-
tratropical continental regions is affected by ENSO at-
mospheric teleconnections.

Because of the logarithmic link function in (B2) the
parameters �os and �1s are not on the same scale as the
response variable. The parameters can be expressed in
terms of change in the response due to a unit change in
any of the explanatory variables. For example, a unit
change in x scales �r by e�1r. Figure 11 shows maps of
e�os (Fig. 11a), e�1s (Fig. 11b), and �os (Fig. 11c) esti-
mated using summer temperature excesses during the
period 1882–2005, which is the period when the SOI
was available. As one could expect, the map of e�os in
Fig. 11a is similar to the map of e�os in Fig. 7a and the
map of �os in Fig. 11c is similar to the map of �os in Fig.
7b, where the shape and scale parameters have been
estimated by setting x � 0 in (B1) and (B2). Figure 11b
shows that over most of North America, some regions
in northern Europe, and Scandinavia e�1s is larger than
1, indicating that �r increases for larger values of the
SOI (i.e., larger variance of excesses during La Niña
conditions). Figure 12a illustrates this effect using a grid
point over southeast North America (37.5°N, 87.5°W).
Figure 12a shows a scatterplot of excesses for this grid

FIG. 10. The p values for the likelihood ratio test for model log �r � �0r � �1r x and
�r � �os against a simpler nested model given by log �r � �0r and �r � �os. The need for
the extra parameter �1r is tested by the null hypothesis Ho: �1r � 0 against the alternative
hypothesis H1: �1r � 0.
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point and the SOI with the median (solid line) and the
upper and lower quartiles (dashed lines) of the GP dis-
tribution with the scale parameter �r � e(�or��1rx) and
shape parameter �r � �os superimposed. The increased
variability of excesses can be noted for larger SOI, even
though high variability of large temperature values is
also noted during neutral conditions (i.e., when SOI is
close to zero).

Figure 11b also shows that for several grid points in
the central Pacific e�1s is smaller than 1 indicating that

�r increases for smaller values of the SOI (i.e., larger
variance of excesses during El Niño conditions). Figure
12b illustrates this effect using a grid point over the
central Pacific (7.5°N, 152.5°W). Figure 12c shows a
similar scatterplot for a grid point in the eastern Pacific
(2.5°N, 92.5°W), where the effect of ENSO on local
temperatures is most pronounced. The effect of larger
variance of excesses during El Niño conditions is not
observed, however: the GP distribution fit is nearly
horizontal. This result suggests that for the 95% thresh-

FIG. 11. Here (a) e�os, (b) e�1s, and (c) �os are estimated using summer temperature
excesses Ty,m – uy,m above the 95% time-varying threshold during the period 1882–2005.
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FIG. 12. Scatterplot of excesses Ty,m – uy,m and SOI for three grid points: (a) southeast
North America (37.5°N, 87.5°W) for excesses above the 95% threshold, (b) central Pacific
(7.5°N, 152.5°W) for excesses above the 95% threshold, (c) eastern Pacific (2.5°N, 92.5°W)
for excesses above the 95% threshold, and (d) eastern Pacific (2.5°N, 92.5°W) for excesses
above the 75% threshold. Median (solid line), upper, and lower quartiles (dashed lines)
of the GP distribution with the scale parameter �r � e(�or��1rx) and the shape parameter
�r � �os.
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old it was not possible to statistically detect the differ-
ential effect of both phases of ENSO (i.e., El Niño and
La Niña) in the eastern Pacific because of the lack of
excesses during La Niña conditions. Figure 10 supports
this result indicating that in the eastern Pacific SOI is
not a statistically significant factor for modulating large
temperature variability over this region. Figure 12d
shows that if the threshold is reduced to 75% it is then
possible to visually detect the differential effect of
ENSO on large temperature variability in the eastern
Pacific (2.5°N, 92.5°W).

7. Temporal clustering and teleconnections of
extremes

a. Temporal clustering analysis

The annual frequency of large values (e.g., the num-
ber of large temperature values such as exceedances
observed during each summer) is a proxy for clustering
of extremes. The average number of summer exceed-
ances ne � (1/N)�ns

i�1e that occur in years for which
there is at least one exceedance provides a measure of
the average cluster size. The binary variable e � 1 if an
exceedance is observed and e � 0 if an exceedance is
not observed; and N is the total number of summers
with at least one observed exceedance. By examining
maps of ne it is possible to identify regions where large
values are more clustered in time (i.e., regions where
there is more serial dependence).

Figure 13 shows ne computed for summer exceed-
ances above the 95% threshold over the period 1870–
2005. A clear contrast between continental and oceanic
regions is noted. Large temperature values are more
clustered over the Atlantic, east Pacific, and Indian
Oceans (e.g., averages between 1.4 and 1.8 events per
year) than over North America, Europe, and Asia (e.g.,
average between 1 and 1.2 events per year). This indi-

cates that extreme temperatures are more clustered
over the oceans than over land mostly because of the
longer memory of the oceans when compared to the
continents. Typical values of ne with associated 90%
confidence intervals (in parentheses) obtained with a
bootstrap resampling procedure are 1.42 (1.00, 1.81) for
a grid point over the tropical Atlantic (17.5°N, 47.5°W)
and 1.20 (1.00, 1.38) for a grid point over central Eu-
rope (47.5°N, 12.5°E).

b. Spatial association of extremes: The � statistics

Association of large values between different loca-
tions (i.e., teleconnection at extreme levels) can be
studied using an asymptotic dependence measure �
(Buishand 1984; Coles et al. 1999) as follows. Suppose
we are interested in investigating how large monthly
mean temperature values at central Europe TE are re-
lated to large monthly mean temperature values at an-
other location TO. If TE and TO have a common distri-
bution function F, it is possible to define

� � lim
u→u �

Pr�TO�u|TE � u�, �9�

where u� is the upper end point of F, so that � is a
limiting measure of the tendency for TO to be large
conditional on TE being large (Coles et al. 1999). In
other words, the probability of temperature at the other
location to be high given that the temperature at central
Europe is high. If � � 0 then TE and TO are “asymp-
totically independent.”

However, two different environmental variables
could well have uncommon or even unknown distribu-
tion functions. Nevertheless, the true distribution of
these variables can be estimated using their empirical
distributions and one way of obtaining identical distri-
butions is to transform them both to uniform distribu-
tions (i.e., ranging from 0 to 1). This can be done by

FIG. 13. Average number of summer exceedances ne obtained using the time-varying
95% threshold uy,m over the period 1870–2005.
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ranking each set of observations TE and TO separately,
and dividing each rank by the total number N� of ob-
servations in each set.

If FTO
and FTE

are the distribution functions of TE

and TO, respectively, (9) can be rewritten as

� � lim
u→1

Pr�FTO
�TO� � u|FTE

�TE� � u�. �10�

It is possible to show that � � lim
u→1

��u�, where

��u� � 2 �
log Pr�FTE

�TE� 	 u, FTO
�TO� 	 u�

log Pr�FTE
�TE� 	 u�

�11�

defined for thresholds u on the range 0 � u � 1 (Coles
et al. 1999). Therefore, by making the uniform trans-
formations rank(TE)/N� and rank(TO)/N� to obtain
FTE

(TE) and FTO
(TO) one can compute �(u), where

rank(.) is the rank of the data. For large thresholds
(i.e., u → 1) the measure �(u), which ranges from 2 �
log(2u � 1)/log(u) to 1, provides a simple measure of
extremal dependence between TE and TO. The sign of
�(u) determines whether the variables are positively or
negatively associated at the quantile level u, with larger
values indicating stronger dependence.

Figure 14a shows the scatterplot of August monthly
mean temperatures TE in a grid point in central Europe
(47.5°N, 12.5°E) and August monthly mean tempera-
tures TO in a grid point in the west North Atlantic
(42.5°N, 67.5°W). The scatterplot shows that tempera-
tures at the two grid points are positively associated.
Indications of extreme dependence are noticeable in
that large values often occur simultaneously at the two
grid points. The extreme dependence measure �(u) is

FIG. 14. (a) Scatterplot of August monthly mean temperatures TE in a grid point in central Europe
(47.5°N, 12.5°E) and August monthly mean temperatures TO in a grid point in the west North Atlantic
(42.5°N, 67.5°W). The vertical and horizontal lines are the 80th quantile of the August monthly mean
temperatures in each grid point, respectively. (b) Scatterplot of transformed values of TE and TO [i.e.,
FTE

(TE) and FTO
(TO)]. The vertical and horizontal lines indicate u � 0.8. (c), (d) As in (a), (b) but for

the grid point in central Europe (47.5°N, 12.5°E) and a grid point in west Russia (57.5°N, 42.5°E).
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defined for any value of u between 1 and 0 and here we
have used the 80th quantile (i.e., u � 0.8). The extreme
dependence measure � is obtained using the points in
Fig. 14a that are located on the right-hand side of the
80th quantile threshold (vertical line) of August tem-
peratures in central Europe. The � statistic is given by
the ratio between the number of points on the top-
right-hand corner of the scatterplot (i.e., those points
that are located above both 80th threshold lines) and
the total number of points to the right-hand side of the
vertical line. The � statistics can also be computed as
described above but instead using the transformed val-
ues of TE and TO [i.e., FTE

(TE) and FTO
(TO)] as shown

in Fig. 14b with u � 0.8 (vertical and horizontal lines).
In practice � is computed using (11). The value of � for
the data shown in Fig. 14a is 0.29 with normal (Gauss-
ian) 95% confidence interval obtained with the delta
method (Coles et al. 1999) of �0.22, 0.80. Figures 14c,d
show similar scatterplots for the grid point in central
Europe (47.5°N, 12.5°E) and a grid point in west Russia
(57.5°N, 42.5°E). No sign of extreme dependence is no-
ticeable between these two grid points. The value of �
for the data shown in Fig. 14c is �0.12 with 95% con-
fidence interval of �0.73, 0.49.

Figure 15a shows a map of � with u � 0.8 for August
monthly mean temperatures for the grid point in cen-
tral Europe (47.5°N, 12.5°E). As expected, grid points
close to the central Europe grid point (47.5°N, 12.5°E)
have large values of �, indicating strong dependence.
The west North Atlantic also shows some dependence,
as previously illustrated in Figs. 14a,b. The � statistics
ranges from 0.25 and 0.5 in the west North Atlantic
regions. Following the interpretation proposed by
Coles et al. (1999) that was also used by Svensson and
Jones (2002), a value of � ranging from 0.25 and 0.5
means that if the temperature in central Europe ex-
ceeds the 80th quantile, then there is a 25%–50% risk
that temperature in the west North Atlantic regions will
also exceed the 80th quantile. This dependence is likely
to be linked to the manifestation of large-scale plan-
etary Rossby waves with ridges over central Europe
and the west North Atlantic and a trough in between.
This dependence could also be related to sea surface
temperature conditions in the North Atlantic, but fur-
ther investigation is required to better understand the
mechanisms behind such a teleconnection. North
America and west Russia show very weak dependence,
as also previously illustrated in Figs. 14c,d.

FIG. 15. Here (a) � and (b) � for the August monthly mean temperatures for the grid
point in central Europe (47.5°N, 12.5°E) with u � 0.8.
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c. Spatial association of extremes: The � statistics

The � statistic provides a measure of extremal de-
pendence for asymptotically dependent variables. As-
ymptotically independent variables (for which � � 0)
can still exhibit dependence at subasymptotic levels, so
another statistic is needed to measure the strength of
this dependence. Following Coles et al. (1999), such a
statistic is given by

� � lim
u→u�

��u�, �12�

where

��u� �
2 log Pr�FTE

�TE� � u�

log Pr�FTE
�TE� � u, FTO

�TTO
� � u�

� 1 �13�

is defined for thresholds in the range 0 � u � 1. The �
statistic ranges from �1 to 1. For asymptotically depen-
dent variables � � 1. For completely independent vari-
ables � � 0. As � provides a summary measure of the
strength of dependence for asymptotically dependent
variables, � provides a corresponding measure for as-
ymptotically independent variables. In other words,
when � � 0 (or close to 0) then � is a more appropriate
measure of the strength of extremal dependence. As
the correlation coefficient is the standard measure of
overall association between two variables, � is a mea-
sure of association between large values.

Figure 15b shows a map of � for August monthly
mean temperatures for the grid point in central Europe
(47.5°N, 12.5°E). As noticed in Fig. 15a, large tempera-
ture values in central Europe are strongly associated
with large temperature values in neighboring grid
points. Central Europe’s large temperature values are
also confirmed to be associated with large temperature
values in the west North Atlantic (Figs. 14a,b). The
value of � for the data shown in Fig. 14b is 0.39 with
normal (Gaussian) 95% confidence interval obtained
with the delta method (Coles et al. 1999) of 0.09, 0.69.
The one-point correlation map between all August
temperature values at the grid point in central Europe
and all other grid points in the Northern Hemisphere
also show positive association between central Europe
and the west North Atlantic (not shown), which is also
noticed in the scatterplot of Fig. 14a. Figure 15b still
shows a regionalized negative association between tem-
peratures in central Europe and west Russia, which is
also noticeable in Fig. 14c, but could not be identified
by examining Fig. 15a alone. The values of � for central
Europe and west Russia shown in Fig. 14d is �0.10 with
a 95% confidence interval of �0.36, 0.16.

8. Conclusions

This study has presented some novel methods for
inferring extremal behavior in gridded datasets. A spa-
tial GP distribution model is used to provide a struc-
tured and rigourous approach for summarizing the
data. By spatial pooling over neighboring grid points,
the model is able to provide smoother more robust spa-
tial estimates than fitting different EVT models at each
grid point. Care is taken to use a time-varying threshold
that avoids sampling biases due to nonstationarity
caused by the annual cycle and long-term trends. The
model can include explanatory variables to account for
temporal changes in the tail distribution such as the
effect of natural modes of variability or long-term cli-
mate trends. Some approaches are also presented for
how to explore temporal clustering of extreme events
and teleconnections between extreme events at differ-
ent spatial locations.

The methods have been illustrated using Northern
Hemisphere gridded monthly mean surface tempera-
tures for June–August months from 1870 to 2005. The
application of the GP distribution model has revealed
that the variance of the temperature excesses at high
values is

• larger in extratropical continental regions than in
oceanic and tropical regions;

• over tropical and most oceanic regions is mainly
driven by local processes rather than by ENSO at-
mospheric teleconnections;

• over the tropical Pacific, southeast North America,
east Europe, Scandinavia, and northwest Asia is af-
fected by ENSO atmospheric teleconnections;

• large during La Niña conditions over southeast North
America;

• large during El Niño conditions over the tropical Pa-
cific.

The GP distribution model still helped to quantify
the magnitude of the European heat wave observed in
August 2003. For example, the return period for ex-
cesses above the 95% threshold for August 2003 for a
grid point in central Europe was estimated to be of the
order of 60 yr. An upper bound for these excesses was
identified and estimated to be of the order of 4°C. In
other words, our analysis suggests the existence of a
finite value that temperatures can reach in central Eu-
rope.

Temporal clustering analysis has revealed that tem-
perature excesses are more clustered over the Atlantic
and east Pacific Oceans than over continental regions.
Teleconnection analysis between extreme events has
indicated that central Europe extreme temperatures
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during August are related to extreme temperatures in
the northwestern Atlantic. This finding suggests that
large-scale atmospheric circulation patterns producing
extreme temperatures over the North Atlantic sector
are likely to simultaneously modulate extreme tem-
peratures over central Europe.

The methods presented here could be further devel-
oped and improved. For example, quantile regression
(Koenker 2005) could be used to define the threshold
for obtaining the excesses. Such an alternative ap-
proach would avoid the estimation of the threshold by
shifting the mean variability of the observed time se-
ries. The methods have been written in the R statistical
language (see online at http://www.r-project.org) as
part of the RCLIM intiative (R software for climate
analysis). The software is freely available from the lead
author.
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APPENDIX A

Procedure for Obtaining �

The constant 	 that ensures 
% of the observed val-
ues above the time-varying threshold uy,m is computed
as follows:

• Sort the quantity Ty,m � Ly,m in ascending order.
• Store in vector (D1, . . . , DK) the K positive, nonre-

peated, sorted values of Ty,m � Ly,m.
• Add D1 to Ly,m and check the percentage of Ty,m

values above Ly,m � D1.
• Add D2 to Ly,m� D1 and check the percentage of

Ty,m values above Ly,m � D1� D2.
• Keep repeating the procedure above until 
% of Ty,m

values are above Ly,m � D1� D2 � . . . � DJ,

where J � K is the jth increment to Ly,m that en-
sures that 
% of Ty,m values is above Ly,m � D1 �
D2 � . . . � DJ.

• The constant 	 is then computed as 	 � �J
j�1Dj.

APPENDIX B

Spatial Model for Generalized Pareto Distribution

The GP temperature parameters could well be esti-
mated using data of each grid point separately. Such an
approach produces noisy spatial patterns because it
does not take advantage of the smooth spatial structure
of the temperature field. To preserve the spatial nature
of gridded datasets one can use multivariate techniques
in which parameters are estimated by pooling data from
several neighbor grid points and spatial dependence is
modeled as follows.

Let �r and �r be the scale and shape parameters for
grid point r, respectively. Suppose we are interested in
grid point s and neighborhood N(s), for example, the
eight immediately neighboring grid points of a central
grid point of interest.

Consider the following model that allows a log-linear
relationship between the scale parameter and a covari-
ate x (e.g., SOI), but in which the shape parameter is
invariant to x:

log�r � �or � �1rx

�r � �or
� for all r ∈ N�s�. �B1�

We allow the log-linear parameters �or and �1r to
vary over N(s) but impose spatial smoothness through a
bilinear structure:

�or � �os � 
�o��r � �s� � ��o�r � s�,

�1r � �1s � 
�1��r � �s� � ��1�r � s�,

where �r, �r are the latitude and longitude of grid point
r. We impose greater spatial smoothness on the shape
parameter by forcing �or to be constant over N(s): �or �
�os for all r in N(s). Similar smoothing methods have
been used by Buishand (1991), Zwiers and Kharin
(1998), and Kharin and Zwiers (2000).

Our model contains seven parameters (�os, �1s, �os,
��o, ��1, ��o, and ��1), but we are particularly inter-
ested in the first three, which correspond to the grid
point of interest. Such a model has the benefit that data
from all grid points in N(s) can be used to estimate
these parameters of interest. For each grid point s, we
estimate the seven parameters by maximum likelihood
using data from the nine grid points in N(s), first re-
writing the model as a simple log-linear model:
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log�r � �os � �1s x � 
�o Xr � ��o Yr � 
�1 x Xr

� ��1x Yr, �B2�

�r � �os,

where Xr � �r – �s and Yr ��r – �s. Results presented
in section 5 were obtained by setting x � 0 in the equa-
tions above (i.e., no covariate for the scale parameter),
while results presented in section 6 use the full model
presented above.

REFERENCES

Beniston, M., 2004: The 2003 heat wave in Europe: A shape of
things to come? An analysis based on Swiss climatological
data and model simulations. Geophys. Res. Lett., 31, L02202,
doi:10.1029/2003GL018857.

——, and H. F. Diaz, 2004: The 2003 heat wave as an example of
summers in a greenhouse climate? Observations and climate
model simulations for Basel, Switzerland. Global Planet.
Change, 44, 73–81.

——, and Coauthors, 2007: Future extreme events in European
climate: An exploration of regional climate model projec-
tions. Climatic Change, 81 (Suppl. 1), 71–95.

Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Meth-
ven, 2004: Factors contributing to the summer 2003 European
heatwave. Weather, 59, 217–223.

Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes
in extreme daily temperature since 1950. J. Geophys. Res.,
113, D05115, doi:1001029/2006JD008091.

Buishand, T. A., 1984: Bivariate extreme-value data and the sta-
tion-year method. J. Hydrol., 69, 77–95.

——, 1991: Extreme rainfall estimation by combining data from
several sites. Hydrol. Sci. J., 36, 345–365.

Choulakian, V., and M. A. Stephens, 2001: Goodness-of-fit tests
for the generalized Pareto distribution. Technometrics, 43,
478–484.

Coles, S. G., 2001: An Introduction to Statistical Modeling of Ex-
treme Values. Springer Series in Statistics, Springer, 224 pp.

——, J. Heffernan, and J. A. Tawn, 1999: Dependence measures
for extreme value analyses. Extremes, 2, 339–365.

Davison, A. C., and R. L. Smith, 1990: Models for exceedances
over high thresholds. J. Roy. Stat. Soc. Ser. B. Methodol., 52,
393–442.

——, and D. V. Hinkley, 1997: Bootstrap Methods and Their Ap-
plication. Cambridge University Press, 582 pp.

Ferro, C. A. T., 2007: A probability model for verifying determin-
istic forecasts of extreme events. Wea. Forecasting, 22, 1089–
1100.

——, A. Hannachi, and D. B. Stephenson, 2005: Simple non-
parametric techniques for exploring changing probability dis-
tributions of weather. J. Climate, 18, 4344–4353.

Fowler, H. J., M. Ekström, C. G. Kilsby, and P. D. Jones, 2005:
New estimates of future changes in extreme rainfall across
the UK using regional climate model integrations. 1. Assess-
ment of control climate. J. Hydrol., 300, 212–233.

Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical
orthogonal functions and related techniques in atmospheric
science: A review. Int. J. Climatol., 27, 1119–1152.

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der
Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001:

Climate Change 2001: The Scientific Basis. Cambridge Uni-
versity Press, 881 pp.

Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale
surface air temperature variations: An extensive revision and
an update to 2001. J. Climate, 16, 206–223.

Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in
an ensemble of transient climate simulations with a coupled
atmosphere–ocean GCM. J. Climate, 13, 3760–3788.

——, and ——, 2005: Estimating extremes in transient climate
change simulations. J. Climate, 18, 1156–1173.

——, ——, and X. Zhang, 2005: Intercomparison of near-surface
temperature and precipitation extremes in AMIP-2 simula-
tions, reanalyses, and observations. J. Climate, 18, 5201–5223.

Koenker, R., 2005: Quantile Regression. Econometric Society
Monograph Series, Cambridge University Press, 366 pp.

Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent,
and longer lasting heat waves in the 21st century. Science, 305
(5686), 994–997.

Nakamura, N., T. Enomoto, and S. Yamane, 2005: A simulation
study of the 2003 heatwave in Europe. J. Earth Simul., 2,
55–69. [Available online at http://www.es.jamstec.go.jp/
publication/journal/jes_vol.2/pdf/JES2_nakamura.pdf.]

Naveau, P., M. Nogaj, C. Ammann, P. Yiou, D. Cooley, and V.
Jomelli, 2005: Statistical methods for the analysis of climate
extremes. C. R. Geosci., 337, 1013–1022.

Nogaj, M., P. Yiou, S. Parey, F. Malek, and P. Naveau, 2006:
Amplitude and frequency of temperature extremes over the
North Atlantic region. Geophys. Res. Lett., 33, L10801,
doi:10.1029/2005GL024251.

Peixoto, J. P., and A. H. Oort, 1993: Physics of Climate. American
Institute of Physics, 564 pp.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003:
Globally complete analyses of sea surface temperature, sea
ice and night marine air temperature, 1871-2000. J. Geophys.
Res., 108, 4407, doi:10.1029/2002JD002670.

Rex, D. F., 1950: Blocking action in the middle troposphere and
its effect upon regional climate. I: An aerological study of
blocking action. Tellus, 2, 196–211.

Schär, C., P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A.
Lineger, and C. Appenzeller, 2004: The role of increasing
temperature variability in European summer heatwaves. Na-
ture, 427, 332–336.

Shabbar, A., and B. Bonsal, 2004: Associations between low fre-
quency variability modes and winter temperature extremes in
Canada. Atmos.–Ocean, 42 (2), 127–140.

Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contri-
bution to the European heatwave of 2003. Nature, 432, 610–
614.

Svensson, C., and D. A. Jones, 2002: Dependence between ex-
treme sea surge, river flow and precipitation in eastern Brit-
ain. Int. J. Climatol., 22, 1149–1168.

van den Brink, H. W., G. P. Können, and J. D. Opsteegh, 2004:
Statistics of extreme synoptic-scale wind speeds in ensemble
simulations of current and future climate. J. Climate, 17,
4564–4574.

Zaitchik, B. F., A. K. Macalady, L. R. Bonneau, and R. B. Smith,
2006: Europe’s 2003 heat wave: A satellite view of impacts
and land-atmosphere feedbacks. Int. J. Climatol., 26, 743–769.

Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of
the climate simulated by CCC GCM2 under CO2 doubling. J.
Climate, 11, 2200–2222.

2092 J O U R N A L O F C L I M A T E VOLUME 21




