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Abstract

We synthesize palaeoclimate records from the mid-latitude arid Asian region dominated today by the Westerlies (‘‘arid central Asia’’

(ACA)) to evaluate spatial and temporal patterns of moisture changes during the Holocene. Sediment records from 11 lakes with reliable

chronologies and robust proxies were selected to reconstruct moisture histories based on a five-class ordinal wetness index with assigned

scores from the driest to wettest periods at individual sites for 200-year time slices. The proxies used in these records include pollen and

diatom assemblages, sediment lithology, lake levels, and geochemistry (mainly isotope) data. The results of our synthesis show that ACA

as a whole experienced synchronous and coherent moisture changes during the Holocene, namely a dry early Holocene, a wetter (less

dry) early to mid-Holocene, and a moderately wet late Holocene. During the early Holocene most of the lakes experienced very low water

levels and even dried out before ca 8 ka (1 ka ¼ 1000 cal aBP). Hence the effective-moisture history in ACA is out-of-phase with that in

monsoonal Asia as documented by numerous palaeoclimate records. In monsoonal Asia, a strong summer monsoon and humid climate

characterized the early Holocene, and a weakened summer monsoon and drier climate prevailed during the late Holocene, which were

mainly controlled by changes in low-latitude summer insolation. In contrast, we propose that the pattern of Holocene effective-moisture

evolution in the westerly dominated ACA was mainly determined by North Atlantic sea-surface temperatures (SSTs) and high-latitude

air temperatures that affect the availability, amount and transport of water vapor. Also, topography of the Tibetan Plateau and adjacent

Asian highlands could have contributed to the intensification of dry climate in ACA during the early Holocene, as a result of

strengthening the subsidence of dry air masses, associated with stronger uplift motion on the plateau by intense heating under a stronger

summer insolation. Summer insolation might have played a key role in directly controlling moisture conditions in ACA but only after the

northern hemisphere ice-sheets had disappeared in the mid- and late Holocene.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of proxy records has been used to document
climate change during the Holocene in many parts of the
world. Understanding the spatial and temporal patterns of
climate change in a given region may provide insights into
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the underlying climate-forcing mechanisms. In east and
south Asia, Asian monsoon variations during the Holocene
have been well-documented by precisely dated cave
deposits (e.g., Fleitmann et al., 2003; Yuan et al., 2004;
Shao et al., 2006). The Indian and East Asian summer
monsoons were enhanced shortly after the Younger Dryas
(YD) at the onset of the Holocene, was strongest in the
early and mid-Holocene, and weakened after the mid-
Holocene. This pattern closely follows changes in summer
insolation at low latitudes (Kutzbach, 1981). Similar
changes in the strength of the Asian monsoons have been
documented by other proxy records from peats (Hong
et al., 2003), lake sediments (Lister et al., 1991; Gu et al.,
1993; Hodell et al., 1999; Xiao et al., 2004; Shen et al.,
2005) and marine sediments (Wang et al., 1999; Gupta
et al., 2003). However, Holocene climate patterns in arid
central Asia (referred to as ACA in this paper) are poorly
documented and understood. This lack of understanding is
partly due to the complex interplay of competing forcing
factors controlling regional climate; these factors include
the low-latitude summer monsoonal circulation, the mid-
latitude Westerlies, and orographic influences of the
Tibetan Plateau. For example, the western part of ACA
experienced a wet mid-Holocene and a dry early and late-
Holocene, as documented by lake-level changes in the Aral
Sea (Boomer et al., 2000), while the eastern part of the
region near the monsoon limit showed a variable wetness
during the entire Holocene, with some possibly drier
intervals in the mid-Holocene (Chen et al., 2003a, b,
2006; Schettler et al., 2006; Zhao et al., 2007).

For expediting the following discussion, we divide the
southeastern part of the Eurasian continent into three
climatically distinct regions: humid Asia mainly controlled
by summer monsoonal circulation; ACA dominated by the
Westerlies; and a transitional zone around modern Asian
summer monsoon limit in semi-arid northwest China and
the southern Mongolian Plateau. In this study we focus
only on the westerly dominated ACA for several reasons.
First, it is one of the driest regions in the world, and its
sparse water resources and fragile ecosystems in a general
dry climate would be very sensitive to abrupt changes in
rainfall (Qin et al., 2005; Narisma et al., 2007). Second,
many lakes in this region, including Aral Sea and Caspian
Sea, experienced similar changes during the Holocene (Qin
and Yu, 1998). Also, a dramatic decline in lake levels has
occurred during the last century at several lakes; such
changes have attracted considerable attention because of
concerns about shortage of water resources and related
ecological problems (Qin and Yu, 1998; Ferronskii et al.,
2003). However, a recent lake-level rise and lake expansion
in the last 20 years at most lakes in arid west China
suggests a possible shift from a warm-dry to a warm-humid
climate under global warming (Shi et al., 2007). Several
syntheses have been published over the last decade, which
provide valuable insights into understanding the Holocene
moisture history of the region. However, most of these
reviews have focused only on parts of arid central Asia, as

previous studies were mostly restricted to China (Shi et al.,
1993, 1994; An et al., 2000; Feng et al., 2006).
A comprehensive review of Holocene moisture evolution
for the entire region is useful to decipher and understand
the complex palaeo-moisture evolution under the same
atmosphere circulation, namely the Westerlies. In addition,
there are potential problems with chronology and proxy
interpretations in some of the early published palaeo
records (cf. Qin and Yu, 1998; An et al., 2000; Feng et al.,
2006). As a result, there remains confusion about the
regional climate patterns, and there is an urgent need to
standardize and synthesize palaeoclimatic information
about ACA mainly based on recent published records.
Such an updated synthesis will help not only understand
the Holocene moisture history of the region, but also
provide information to assess climate simulations using
general circulation model (GCM) and regional climate
model (RCM, e.g., Sato and Kimura, 2005).
Here we review 11 lake records from the westerlies-

dominated region of ACA (Fig. 1). The objectives of this
study are (1) to review recently published proxy climate
records from lake sediments; (2) to derive a semi-
quantitative reconstruction of moisture history during the
Holocene; and (3) to understand potential controls and
mechanisms of the observed temporal and spatial patterns.

2. Data sources and analyses

In ACA there are abundant climatic records from
continental eolian deposits, including loess and dune
deposits. However, these records tend to have low
temporal resolution and be discontinuous, even in the
thick loess deposits on the Chinese loess Plateau that have
high accumulation rates (e.g., Lu et al., 2006; Stevens et al.,
2006). Therefore, in this study we have selected records
from lake sediments based on four criteria: (1) the selected
sites should be from extant lakes, so that any potential
hard-water effect on radiocarbon ages can be evaluated
and corrected. (2) The record length should cover most of
the Holocene without documented depositional hiatuses.
(3) The proxies derived from the records should be
indicative of changes in precipitation or effective moisture
(precipitation minus evaporation). (4) The selected records
should have a sampling resolution of better than 200 years
in most cases. We consider various proxies from different
cores at the same lake site in multiple publications as
one record. With the exception of the Aral Sea, the
core data from individual lakes are considered to be
primary data sources. However, secondary data sources
from geomorphic evidence, such as shoreline features,
lacustrine sediments above the present lake, and historical
documents for lake-level change, as is the case in the Aral
Sea (Boomer et al., 2000), were taken into consideration in
the quantitative wetness reconstruction. Therefore, all the
published data from an individual lake were synthetically
considered as a record in reconstructing effective-moisture
changes during the Holocene. When climatic records from
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a lake are inconsistent in different publications we used the
latest publications that also evaluate the previous inter-
pretations. Our site-selection criteria make our review and
synthesis different from earlier published reviews (e.g., Li,
1990; Shi et al., 1993; An et al., 2006; Feng et al., 2006;
Herzschuh, 2006). Based on these criteria, 11 lake sites
were considered suitable for this study (Table 1 and Fig. 1).

At individual sites, all radiocarbon ages were first
corrected, if necessary, to remove any possible old-carbon
effect using information provided in the original publica-
tions. The corrected 14C ages were then calibrated to
calibrated ages using the OxCal 3.10 program (Bronk
Ramsey, 1995, 2001). Calibrated ages are used in compiling
effective-moisture curves throughout the text (expressed as
cal a BP or ka, 1 ka=1000 cal a BP).

Moisture conditions are coded on a five-scale (0–4)
wetness index at individual lake sites: the driest (0) indicating
the driest interval at that particular site during the Holocene,
and the wettest (4) indicating the wettest period at that
particular site during the Holocene. The justification for
designating an ordinal wetness scale is that each individual
lake may not be linearly comparable to other lakes due to
different geographic locations, hydrological setting, sedimen-
tary proxies used and as a result of different sensitivity. So
the wetness scales are relative, in a semi-quantitative sense,

and only applicable to that particular site. Relative wetness
was assigned for each 200-year time interval, except for the
500-year intervals at Hovsgol Lake. The effective moisture is
based primarily on lithological information and multi-proxy
indicators from sediment cores at an individual lake. For
example, a high wetness value would be assigned to intervals
with varved sediments, fine-grained sediments, low oxygen-
isotope values, high Artemisia/Chenopodiaceae pollen ratios,
or abundant planktonic diatoms. On the other hand, eolian
sand, or even fluvial sand would be given the lowest wetness
value (0).
Here we use Bosten Lake as an example to illustrate how

we assign relative wetness values to proxy records (Fig. 2).
During the Lateglacial and early Holocene from 17 to
8.4 ka, all four cores taken from the deepest (416m water
depth) and shallow parts of the lake consistently show
coarse sand deposits with a mean grain size of 40.1mm
(Huang et al., 2007), indicating that the lake had completely
dried up (Fig. 2). Thus, this period was driest at Bosten Lake
and receives a wetness score of 0. After 8.4 ka, the relative
wetness values are assigned for each 200-year interval
mainly on the basis of the Artemisia-to-Chenopodiaceae
(A/C) pollen ratios from core BST04H (Fig. 2; Huang,
2006). A/C ratios have been widely used to represent the
relative dominance and production of steppe and desert
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Fig. 1. Overview map showing the palaeoclimatic sites selected in this study from arid central Asia (numbers) and monsoonal Asia (lower case letters), and

the dominant circulation systems (arrows with upper case letters) of the Westerlies (A), Indian monsoon (B), and East Asian monsoon (C). The modern

Asian summer monsoon limit (dashed line, D, after Gao, 1962) is shown by a dark dashed line. The site numbers in arid central Asia (squares) are the same

as those listed in Table 1, except for site number 12 for the Caspian Sea. The sites in monsoonal Asia (triangles) include speleothem records ((a) Qunf Cave,

Southern Oman; (b) Shanbao Cave, central China; and (c) Dongge Cave, SW China), lake records ((d) Siling Lake and (e) Qinghai Lake), marine records

((f) Arabian Sea and (g) South China Sea), and peat records ((h) Hongyuan peat bog and (i) Hani peat bog). See Table 1 and the text for references.
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plants and to infer changes in local effective moisture, with
high A/C ratios representing high steppe dominance in a wet
climate (El-Moslimany, 1990; Van Campo et al., 1996;
Demske and Mischke, 2003; Herzschuh et al., 2004; Zhao
et al., 2007). Eleven AMS 14C ages on terrestrial plant
remains and bulk organic matter provide the core chronol-
ogy, after removing a hard-water effect of 1140 years based
on dating of surface plant materials and after comparing
ages from terrestrial plants remains with those from bulk
organic matter of the same sample (Huang, 2006). The
chronology of core BST04H was then established using
linear interpolation between calibrated radiocarbon ages.
Periods with A/C ratios of 0.4–0.6 for the last 8.4 ka receive
an average wetness score of 1, A/C ratios of 0.6–0.8 receive a
score of 2, A/C ratios of 0.8–1.0 receive a score of 3, and
A/C ratios higher than 1.0 receive a score of 4 (Fig. 2).

Once wetness scores for each of 11 lake sites were
assigned at 200-year time intervals, a synthesized curve for

the entire region of ACA during the Holocene was created
by averaging the 11-site scores for each 200-year time slice
(Fig. 3). This procedure assumes that each site is equally
sensitive to climate change and equally well dated, and that
there are no gradients in response across the area. In
reality, some records were obviously better dated than
others and various proxies from these sites may show
different sensitivity to climate change. However, it is not
practical for the purpose of this synthesis to assign weights
to each individual site, with information available in the
publications.

3. Temporal moisture change during the Holocene in arid

central Asia

Many lakes, including Bosten Lake (5), Bayan Nuur (6),
Juyan Lake (9), Gun Nuur (10) and Hulun Nuur (11), were
totally dried up or were very shallow during the early
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Table 1

Palaeomoisture records selected from arid central Asia. Lake sites are listed from west to east as in Fig. 1

Site Lake Lat.

(1N)

Long.

(1E)

Elev.

(m

a.s.l.)

Lake

area

(km2)

Coring site water

depth (m)

Max.

water

depth

(m)

Time

period

(ka)

Sample

resolution

(a)

Dating

method

Number

of

dating

Proxies

used

References

1 Lake

Van

38.40 43.20 1648 3522 420 458 0–13 Ca 20 Varve

counting

– d18O,

pollen,

SDRa

Landmann et al. (1996), Wick

et al. (2003)

2 Aral

Sea

45.00 60.00 53 17,158 23 40.4 0–12 Ca 200 Conventional
14C

36 Terrace,

historical

documents,

SDR,

CaCO3

Boomer et al., (2000),

Ferronskii et al. (2003)

3 Issyk-

Kul

42.50 77.10 1606 1584 240 668 0–8 Ca 195 AMS-14C 8 d18O,

CaCO3

Rasmussen et al. (2001),

Ricketts et al. (2001),

Ferronskii et al. (2003)

4 Wulun

Lake

47.20 87.29 478.6 927 12 13.9 0–10.3 Ca 90 AMS-14C 6 Pollen,

ostracod,
13C, d18O

Jiang et al. (2007)

5 Bosten

Lake

42.00 87.02 1047.5 1100 6.25; 16.10 16.5 0–17 10–80 AMS-14C 17 Pollen,

Grain size,

CACO3

Wünnemann et al. (2003,

2006), Huang (2006), Huang

et al. (2007)

6 Bayan

Nuur

50.00 94.02 932 2 N/Ab N/A 0–15.6 N/A Conventional
14C

12 Terraces,

pollen

Dorofeyuk and Tarasov

(1998), Grunert et al. (2000)

7 Telmen

Lake

48.83 97.33 1789 194 24.54 27 0–7 Ca 190 AMS-14C 6 Diatom,

pollen,

CaCO3

Peck et al. (2002), Fowell et

al. (2003)

8 Hovsgol

Nuur

51.00 101.20 1645 2760 222; 236 262 0–14.5 200–450 AMS-14C 10 Diatom,

pollen,

biogenic

silica, MSc

Tarasov et al. (1996),

Dorofeyuk and Tarasov

(1998), Karabanov et al.

(2004); Nara et al. (2005);

Prokopenko et al. (2005)

9 Juyan

Lake

41.80 101.80 892 24 N/A 0.63 0–10.7 Ca 160 AMS-14C 5 Pollen Chen et al. (2003b),

Herzschuh et al. (2004)

10 Gun

Nuur

50.25 106.60 600 4 5 5 0–9.4 25–100 AMS-14C 9 Diatom,

d13Corg,

CaCO3,

MS

Wang et al. (2004), Feng et al.

(2005)

11 Hulun

Nuur

48.92 117.38 545 2339 N/A 8 0–12 150–200 Conventional
14C

6 Pollen, MS Wang and Ji (1995), Yang

and Wang (1996)

aSDR: sediment deposition rate.
bN/A: not available; the moisture proxy from Bayan Nuur (site 6) was based on beaches and there were no information about sample resolution.
cMS: magnetic susceptibility.

F. Chen et al. / Quaternary Science Reviews 27 (2008) 351–364354
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Holocene before 8 ka (Fig. 3). Large deep lakes, such as the
Aral Sea, Issyk-Kul and Lake Van, were still present, but at
low lake levels. The Caspian Sea also reportedly had a
lower water level before 8 ka than at present (Kazanci
et al., 2004), though this site is not included in this synthesis
because of its low sampling resolution. These records
suggest that the climate was extremely dry during the early
Holocene. After ca 8 ka, a return to moist conditions in the
study region is indicated by the appearance of most shallow

lakes and by rising lake levels of deep lakes. The timing for
lake appearance is different among lake records. Gun Nuur
started to be filled by water as early as ca 9 ka (Wang et al.,
2004; Feng et al., 2005), although lake level further
increased at ca 7 ka (Fig. 3). Lake Telmen started to
appear at ca 7 ka (Fowell et al., 2003). This absence of
synchronicity in the appearance of lakes (and thus a humid
climate) may result either from local differences in
individual lakes’ geological and hydrological settings, such

ARTICLE IN PRESS

Fig. 2. Holocene moisture records from Bosten Lake, Xinjiang, NW China as an example showing how to convert sedimentary proxy records into a

relative moisture index. Sediment core XBWu46 is from Wünnemann et al. (2003, 2006) and other cores from Huang (2006). Calibrated ages shown with

the cores are based on radiocarbon ages on terrestrial plant remains and OSL dating on quartz. The Artemisia-to-Chenopodiaceae (A/C) pollen ratio and

mean grain size analysis are from core BST04H (Huang, 2006).

Fig. 3. Temporal moisture changes at each site (site numbers are the same as in Table 1) and the average moisture index (far right curve) for ACA as a

whole during the Holocene. The vertical dotted line at sites 3, 4, 7 and 10 indicate that the shown sediment cores did not penetrate the entire Holocene

sediment. Shading indicates widespread dry lake beds or low lake-levels in arid central Asia.

F. Chen et al. / Quaternary Science Reviews 27 (2008) 351–364 355
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as groundwater influences, lake area-to-volume ratio (basin
morphology) and mean residence time, or from regional
differences in climate responses. Dating problems in the
original records may also result in the absence of
synchronicity. Pollen data supported the general humid
climate in mid-Holocene at 6 ka in the Mongolian Plateau
(Tarasov et al., 1999).

Most lakes experienced maximum effective moisture
between 8 and 4 ka in the mid-Holocene (Fig. 3). After
this moisture increase, a coherent decrease in moisture
continued to the present, with a return to a slightly wet
climate around 2 ka (Fig. 3). The duration and extent of
this late-Holocene climate amelioration was relatively short
and less extensive in comparison to the previous moisture
maxima.

The synthesized Holocene effective moisture in ACA
can be summarized as follows: (1) a drier than present
climate prevailed in the early Holocene before ca 8 ka;
(2) maximum moisture conditions with the highest lake
levels or densest vegetation cover are in the mid-Holocene
around 8–4 ka at most sites; and (3) a decreasing moisture
trend (but still wetter than the early Holocene) lasted until
ca 1.5 ka. Most sites showed decreasing moisture during
the last 2000 years.

4. Spatial patterns of Holocene moisture evolution in arid

central Asia and monsoonal Asia

We divide the Holocene into four periods to investigate
the regional patterns of Holocene moisture change in ACA
and compared them with those in monsoonal Asia: early
Holocene (ca 11–8 ka), mid-Holocene (8–5 ka), late Holo-
cene (5–2 ka), and the last 2 ka. The Holocene moisture
histories show distinct spatial patterns between ACA and
monsoonal Asia (Fig. 4). Climate was clearly dry in the
westerly dominated ACA during the early Holocene but it
was humid during the mid-Holocene (Fig. 4). A moderately
humid climate prevailed in ACA during the late Holocene
and the last 2 ka, although there are large regional
variations, with a less spatially coherent pattern compared
to the early or mid-Holocene (Fig. 4). Some lake sites (e.g.,
Lake Telmen) show a continuous moisture increase until
the late Holocene. A low-resolution lake-level curve of the
Caspian Sea reconstructed from coastal terraces also shows
low levels in the early Holocene and high levels in the mid-
Holocene around 6 ka (Fig. 4; Overeem et al., 2003;
Kazanci et al., 2004).
Herzschuh (2006) provided a detailed review of Holocene

effective-moisture changes in monsoonal Asia, including the
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Fig. 4. Spatial patterns of effective-moisture change from arid central Asia and monsoonal Asia for four different periods of the Holocene (sites are the

same as in Fig. 1). The Caspian Sea is from Overeem et al. (2003). The modern boundary between the Asian monsoon dominant region and the Westerlies

dominant region is shown by a heavy dashed line on the map. Three summarized moisture scales: dry (wetness score 0–1.5), moderate (score 1.5–2.5), and

wet (score 2.5–4.0).

F. Chen et al. / Quaternary Science Reviews 27 (2008) 351–364356
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East Asian and Indian monsoon regions of Asia, based on
published data. She showed that the Holocene climate
optimum with high precipitation occurred during the early
Holocene in the Indian monsoon region, but possibly
occurred during the mid-Holocene in the East Asian
monsoon region. Here in our synthesis we have only
selected palaeoclimate records with a reliable chronologies
and robust climate proxies to evaluate the Holocene
monsoon or moisture history and to compare with our
synthesis in ACA. We used four published speleothem
records from monsoonal Asia covering most of the
Holocene, namely Dongge Cave (Yuan et al., 2004; Wang
et al., 2005a) in southwest China whose climate is
dominantly influenced by the Indian monsoon, Shanbao
Cave (Shao et al., 2006) in central China that is climatically
controlled by the East Asian monsoon, and Hoti Cave
(Fleitmann et al., 2007) and Qunf Cave (Fleitmann et al.,
2003) in the Oman that is dominated by the Indian
monsoon. We also evaluate two peat-core records from
northeast China (Hong et al., 2005) and from the eastern
Tibetan Plateau (Hong et al., 2003), and two marine records
from the Arabian Sea (Staubwasser et al., 2002; Gupta
et al., 2003) and from the South China Sea (Wang et al.,
1999), respectively. We also selected two lake records
documented by carbonate oxygen isotopes, Siling Lake (Gu
et al., 1993) in the southern Tibetan Plateau where climate
is controlled by the Indian monsoon and Qinghai Lake
(Lister et al., 1991; Liu et al., 2007) in the northeast Tibetan
Plateau that is dominated by the East Asian Monsoon. All
these well-dated monsoon records show a strong monsoon
(high precipitation) in the early and mid-Holocene, and a
weak monsoon (low precipitation and dry climate) during
the late Holocene (see Fig. 5 for most records mentioned
above). However, some speleothem records appear to show
a trend of increasing summer monsoon over the last
millennium (Fig. 5; Fleitmann et al., 2003, 2007; Yuan
et al., 2004; Wang et al., 2005a; Shao et al., 2006). We found
that the Indian and East Asian summer monsoons show
similar and consistent changes at orbital time scales during
the Holocene.

5. Contrasting patterns of Holocene moisture histories

between arid central Asia and monsoonal Asia

Various proxy data from speleothem, lake sediments,
peat cores and marine sediments as discussed above show
similar patterns in effective moisture and precipitation
change during the Holocene in monsoonal Asia. In their
review, An et al. (2000) proposed that the Holocene
optimum of the East Asian monsoon was asynchronous
among different regions. However, evidence from recently
well-dated records does not appear to support this
hypothesis (Feng et al., 2006). Also, our synthesis shows
that the East Asian and Indian monsoons have been
synchronous during the Holocene, which is different from
the conclusion in a recent synthesis by Herzschuh (2006).
The different conclusions from these syntheses are partly

due to the fact that An et al. (2000) and Herzschuh (2006)
used some coarse-resolution and poorly dated records,
especially in the case of An et al. (2000). The general trend
of Holocene Asian monsoon history has been related to
changes in summer insolation at low latitudes (Kutzbach,
1981; COHMAP Members, 1988; Wang et al., 2005a).
Strong summer insolation in the Northern Hemisphere
during the early Holocene (Berger and Loutre, 1991)
induced strong land–ocean pressure and temperature
gradients and increased onshore moist air flow in the
summer, causing an enhanced Asian summer monsoon
(COHMAP Members, 1988). The gradual weakening of
the Asian summer monsoon since the mid-Holocene was in
response to the orbitally induced decrease in summer
insolation (e.g., Gupta et al., 2003), enhanced by the
feedbacks from changes in vegetation cover and soil
moisture as was the case in North Africa (Kutzbach
et al., 1996; Ganopolski et al., 1998). A time delay of 2000
years of the strongest summer monsoon following the
maximum summer insolation was apparently modulated
by the waning ice-sheets in the Northern Hemisphere
(Fleitmann et al., 2007).
In contrast to the moisture history of the region

dominated by the Asian summer monsoon, the effective
moisture in ACA was lowest in the early Holocene and
highest in the mid-Holocene. The effective moisture in the
late Holocene was lower than during the mid-Holocene but
higher than during the early Holocene. As a result, the
Holocene moisture history in the westerlies-dominated
ACA was out-of-phase with that in the Asian monsoonal-
dominated region. That is, a wet monsoon Asia corre-
sponds to a dry ACA during the early Holocene, and a
decreased monsoon and wet ACA during the mid- and late
Holocene. This out-of-phase pattern of Holocene moisture
histories between monsoonal Asia and ACA is summarized
in Fig. 5k.

6. Possible forcing mechanisms for Holocene moisture

evolution in arid central Asia

The Holocene ACA moisture history appears to be
similar to the pattern of the Holocene sea-surface
temperatures (SSTs) in the North Atlantic (e.g., Kaplan
and Wolfe, 2006) and in the Norwegian Sea (Koc- et al.,
1993; Birks and Koc- , 2002; Figs. 6c and d), as well as
the air temperatures recorded in the GRIP ice-core
(Dahl-Jensen et al., 1998; Fig. 6e) and in the European
pollen records (Davis et al., 2003). The North Atlantic was
warmest in the mid-Holocene between ca 9–8 ka and 5 ka
after the rapid temperature increase in the early Holocene
(Fig. 6c). Recent alkenone-derived SST reconstructions in
the North Atlantic show similar patterns (e.g., Kim et al.,
2007). Air temperature in Greenland and Europe also
reached its maximum during the mid-Holocene. Relative
sea level from Barbados, as an indicator of global ice
volume, increased following the early Holocene and
reached near present sea-level at ca 8 ka (Fig. 6f; Peltier
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and Fairbanks, 2006), corresponding to the final collapse
of ice-sheets in the Northern Hemisphere (Lowe and
Walker, 1997). All this evidence supports possible linkages
between Holocene ACA moisture changes and temperature
changes around the North Atlantic Ocean. Influences of
SST in the Atlantic and Pacific oceans on continental
droughts in North America have been increasingly
documented from instrumental record (e.g., McCabe
et al., 2004) and proxy data (Li et al., 2007). So oceanic
controls over effective moisture in the interior of Eurasian
continent are a plausible mechanism, through the so-called
circumglobal teleconnection along a mid-latitude wave
train where both the North Atlantic and central Asia have
been identified as prominent ‘‘centers of action’’ (Ding and
Wang, 2005).

Precipitation in the ACA region depends mainly on the
amount of water vapor transported by the mid-latitude
Westerlies from the North Atlantic Ocean and from inland
seas and lakes along the westerly cyclonic storm paths
(Böhner, 2006). We hypothesize that both North Atlantic
SST and air temperature may have controlled the ACA
precipitation changes during the Holocene. During the last
deglaciation and early Holocene, the ice-sheets at high
latitudes were still large compared with the mid- and late
Holocene, modulating and reducing air temperature even
though summer insolation was higher. Large meltwater
discharges from the ice-sheets also reduced the ocean-
surface temperature in the North Atlantic Ocean. Both low
air temperature and SST are well-documented by proxies
from various archives (Koc- et al., 1993; Dahl-Jensen et al.,
1998; Johnsen et al., 2001; Birks and Koc- , 2002; Kaplan
and Wolfe, 2006; see Fig. 6). During the early Holocene,
the maximum summer insolation enhanced the Asian
summer monsoon (Staubwasser et al., 2002; Wang et al.,
2005b) and increased the latitudinal temperature gradient
(high temperature in low latitudes) on land, due to the
cooling effect of ice-sheets at high latitudes. The higher
temperature in low latitudes during the early Holocene is
documented in the Guliya ice core from the Tibetan
Plateau (Thompson et al., 1997; Thompson et al., 2006).
This large meridional temperature gradient during the early
Holocene would have enhanced the mid-latitude westerlies
air-stream and also would have shifted the westerlies jet
stream southward. The cold ocean surface would have
reduced water evaporation from the North Atlantic Ocean,
while cold inland continental conditions in the ACA region
would result in weak cyclonic activity at middle latitudes,
and a strong but southward westerlies jet stream would
influence ACA with strong winds throughout the whole
year. All of these would result in less precipitation and a

dry climate in ACA during the early Holocene. Eolian data
and model simulations indicate that the influence of the
Atlantic Westerlies could penetrate markedly eastward,
even to the western Chinese Loess Plateau (Vandenberghe
et al., 2006). During the mid- and late Holocene, when
Northern Hemisphere ice-sheets were reduced or elimi-
nated, both the North Atlantic SST and high-altitude air
temperature increased (Fig. 6). The high SST in the North
Atlantic region would induce more vapor from the Atlantic
and high continental temperatures would induce high
humidity available for recycled local moisture over the
Eurasian continent (Numaguti, 1999), both of which would
lead to more precipitation in arid central Asia. In addition,
high air temperatures in ACA during the mid-Holocene
would be expected to increase cyclonic activity and
synoptic disturbances along the Westerlies, resulting in
more convective precipitation. The increasing precipitation
in ACA shown by instrumental data over the last 50 years
(Jin et al., 2005) and an increase in effective moisture as
documented by tree-ring records in the Tianshan Moun-
tains (Li et al., 2006) support a warm and wet association
in the Westerly dominated central Asia. Therefore, a warm
North Atlantic would lead to higher evaporation from the
North Atlantic, and higher air temperatures would enhance
the westerlies disturbance and increased cyclonic activity
(precipitation). Both factors would result in convective
precipitation enhancing the moisture supply to central
Asia. The decreasing effective moisture after the mid-
Holocene in ACA matches a temperature decrease related
to the reducing summer insolation. Therefore, we suggest
that summer insolation of the Northern Hemisphere played
a key role in ACA moisture changes only when the ice-
sheets had disappeared.
The Tibetan Plateau and adjacent highlands in Asia may

also play important roles in causing out-of-phase moisture
changes during the Holocene. Strong insolation in summer
at low latitudes causes a strong uplift motion of air mass
over the high Asia (including the Tibetan Plateau). The
resultant low pressure in the low troposphere near the land
surface leads to a large-scale convergence and enhancement
of the Asia summer monsoon (Ye and Gao, 1979). On the
other hand, strong summer insolation and convective
heating in southeast Asia during summer will consequently
result in the intensified subsidence of air masses to the
north of High Asia (Tibetan Plateau), which inevitably
causes a dry climate in ACA (Broccoli and Manabe, 1992;
Rodwell and Hoskins, 1996). Therefore, a strong summer
monsoon would be correlated to a dry climate in arid
central Asia. We propose that the stronger summer
insolation in the early Holocene would have intensified
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Fig. 5. Comparison of synthesized Holocene effective-moisture evolution in arid central Asia (k) with other selected proxy records from monsoonal Asia:

(a) Dongge Cave D4, China (after Yuan et al., 2004); (b) Dongge Cave DA, China (after Wang et al., 2005a); (c) Shanbao Cave SB10-26, China (after

Shao et al., 2006); (d) Qunf Cave, Oman (after Fleitmann et al., 2003); (e) Hongyuan Peat, and (f) Hani peat, China (after Hong et al., 2003, 2005);

(g) Siling Lake, China (after Gu et al., 1993); (h) Qinghai lake (after Liu et al., 2007); and (i) Arabian Sea (after Gupta et al., 2003). All curves in panels

(a)–(i) show the same direction of moisture change with increasing moisture upward. The long-term trend for each proxy curve is showed by smooth

dashed line. Summer insolation at 301N ((j) after Berger and Loutre, 1991) is also shown. The out-of-phase relationship of Holocene moisture evolution

between monsoon Asia and ACA is illustrated in (l).
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the Asian summer monsoon, inducing a wet climate in
monsoon-dominated region, and at the same time strength-
ened the subsidence of air masses to central Asia north of
the Tibetan Plateau, causing a drier climate in ACA (e.g.,
Sato and Kimura, 2005; Zhao et al., 2007).

In summary, we hypothesize that the out-of-phase
pattern of Holocene moisture (precipitation) evolution in
ACA with the Asian summer monsoon was mainly
controlled by North Atlantic SST and high-latitude air
temperature as modulated by waning ice-sheets. The
remaining ice-sheets led to low SST in the North Atlantic
Ocean and low air-temperatures at high latitudes in the
early Holocene, resulting in low vapor transport by the
Westerlies, while both high SST and air-temperature might
increase westerlies moisture transport and cyclonic activity

leading to high precipitation during the mid- and late
Holocene in ACA. Intense heating of the Tibetan Plateau
by high summer insolation may have partially enhanced a
drier climate during the early Holocene in ACA. The
Northern Hemisphere summer insolation played key roles
only when Northern Hemisphere ice-sheets vanished in the
mid- and late Holocene, explaining the slightly decreasing
moisture after the mid-Holocene in ACA.

7. Conclusions

On the basis of palaeoclimatic records from 11 selected
lakes in westerly dominated ACA, we find an out-of-phase
relationship in Holocene moisture histories between ACA
and the Asian monsoon-controlled region. In contrast to
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monsoonal Asia where maximum moisture occurred
during the early to mid-Holocene, maximum moisture
(precipitation) occurred during the mid-Holocene in ACA.
We suggest that the out-of-phase pattern results from
different controlling factors of moisture change in both
regions. In monsoonal Asia, summer insolation at low
latitudes has been the main driving force for changing
intensities of Asian summer monsoon and precipitation.
However, the climate in ACA has been mostly influenced
by North Atlantic Ocean SST and high-latitude air-
temperature as modulated by the waning ice-sheets in the
Northern Hemisphere during the early Holocene. Persis-
tently high SST in the North Atlantic Ocean, high air-
temperatures in mid-latitudes, and still high summer
insolation during the mid-Holocene all played major roles
in causing peak effective moisture in ACA, through
enhanced moisture transport from the North Atlantic
and increased cyclonic activities.

We suggest that further studies are needed to document
and fully understand the spatial and temporal patterns of
Holocene moisture (precipitation) changes in ACA during
the Holocene. Additional sites should be used to further
test our out-of-phase hypothesis of Holocene moisture
changes derived from the limited number of sites reviewed
here. Due to the limitations of currently available climate
records from the region, we do not discuss potential abrupt
changes during the Holocene, such as the well-documented
8.2 ka event and 4.2 ka dry events. Newly collected high-
resolution records should be able to evaluate their presence
and potential North Atlantic connections. In addition,
climate simulations using GCM and RCM would be useful
in testing the relative importance of competing forcing
factors under different boundary conditions in and around
arid central Asia. In particular, potential influences of
ocean conditions on continental aridity should be explored
in the Eurasian continent based on analyses of instru-
mental and proxy data. Also, role of Arctic Oscillation
(AO) should be taken into account when discussing large-
scale climate connections, as AO is closely connected with
the Rossby wave pattern. This study will hopefully help to
improve our understanding of wet–dry climate changes and
desertification processes in ACA and enhance our ability to
project the regional moisture responses to future global
warming.
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