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ABSTRACT

Long-term trends in the climate system are always partly obscured by naturally occurring interannual
variability. All else being equal, the larger the natural variability, the less precisely one can estimate a trend
in a time series of data. Measurement uncertainty, though, also obscures long-term trends. The way in which
measurement uncertainty and natural interannual variability interact in inhibiting the detection of climate
trends using simple linear regression is derived and the manner in which the interaction between the two
can be used to formulate accuracy requirements for satellite climate benchmark missions is shown. It is
found that measurement uncertainty increases detection times, but only when considered in direct propor-
tion to natural variability. It is also found that detection times depend critically on the correlation time of
natural variability and satellite lifetime. As a consequence, requirements on satellite climate benchmark
accuracy and mission lifetime must be directly related to the natural variability of the climate system and
its associated correlation times.

1. Introduction

The U.S. National Research Council, in its decadal
survey of the National Oceanic and Atmospheric Ad-
ministration (NOAA) and the National Aeronautics
and Space Administration (NASA) (National Research
Council, Committee on Earth Science and Applica-
tions from Space 2007), has called for the following
new philosophy in monitoring climate change from
space:

Design of climate observing and monitoring systems
from space must ensure the establishment of global,
long-term climate records, which are of high accuracy,
tested for systematic errors on-orbit, and tied to irre-
futable standards such as those maintained in the U.S.
by the National Institute of Standards and Technol-
ogy. For societal objectives that require long-term cli-

mate records, the accuracy of core benchmark obser-
vations must be verified against absolute standards
on-orbit by fundamentally independent methods, such
that the accuracy of the record archived today can be
verified by future generations. Societal objectives also
require a long-term record not susceptible to compro-
mise by interruptions in that data record.

In this note we call observations that satisfy these
demands climate benchmarks.

Climate benchmarks mark a departure from the cur-
rent paradigm of climate monitoring in which space
instruments are assumed to be “stable.” In the stability
paradigm, the accuracy of an instrument is assumed to
be unknown yet unchanging. A climate data record is
formed, then, by adding offsets to each in a series of
satellite instruments so that there is no difference be-
tween satellites’ measurements during periods of over-
lap (National Research Council, Committee on Climate
Data Records from NOAA Operational Satellites
2004). The result is a time series of measurements with
no obvious discontinuities. Prime examples of this para-
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digm are the records of upper-air temperature estab-
lished using the Microwave Soundings Units (MSUs)
aboard the NOAA series satellites (Spencer and
Christy 1990). Some evidence is given to support the
stability of the MSU instruments (Spencer and Christy
1993), but complications in bias adjustment during pe-
riods of instrument temporal overlap—a procedure that
must be undertaken because the instrument accuracy
is unknown—provide the ultimate uncertainty in the
climate record established by MSU (Climate Change
Science Program 2006).

The paradigm of climate monitoring using instru-
ments traceable to international measurement stan-
dards (National Research Council, Committee on
Earth Science and Applications from Space 2007;
Ohring 2007) calls for a different analysis technique.
After calibration, every measurement obtained is
known to be accurate to within an uncertainty deter-
mined by the multiple calibration pathways to the
international system of units on board the spacecraft.
No statement can or need be made regarding whether
the uncertainty of the measurements is changing or
unchanging with time. Conservative error analysis re-
quires that the worst-case scenario for error propaga-
tion be considered the relevant one: if changing uncer-
tainty leads to greater error in the result, then changing
uncertainty must be assumed; if unchanging uncertainty
leads to greater error in the result, then unchanging
uncertainty must be assumed. Ordinary linear regres-
sion is the obvious analysis method for climate bench-
mark data. With a series of climate benchmarks, one
obtains a time series of data, with or without gaps in
time, wherein each data point is accurate to within an
uncertainty established by its traceable pathways to in-
ternational standards. In the problem of detecting
slowly evolving trends in the climate system, one must
also consider the shorter time-scale natural fluctua-
tions of the climate as an additional source of uncer-
tainty. Thus, the uncertainty associated with each
point in a time series of data is estimated as the stan-
dard deviation of the data points from the best-fit line,
and both measurement uncertainty and natural vari-
ability contribute to that standard deviation. In consid-
ering their contributions through a proper error analy-
sis, one arrives at minimum signal detection times
and requirements for instrument accuracy that are dic-
tated by nature. In this paper, we present such an error
analysis.

2. Derivation by linear regression

To arrive at an equation that can be used for calcu-
lating a requirement for climate benchmark accuracy,

we start with standard linear regression (Williams 1959;
von Storch and Zwiers 1999). Ultimately, a climate
benchmark time series will be used to determine wheth-
er there are trends in the climate system. We give the
solution for the trend m in an N-element time series of
data di at times ti:

m � ��
j�1

N

�tj � t �2��1

�
i�1

N

di�ti � t �, �1�

where t is the mean of the times ti. A determination of
the slope is inevitably corrupted by natural variability
of the climate system, which adds scatter to the data
away from any fitted line. A determination of the slope
is also corrupted by measurement uncertainty, which
adds scatter to the data, too. In data analysis one com-
putes the uncertainty in the estimate of the trend using
the data’s residuals. In deriving accuracy requirements
for a climate benchmark instrument, we estimate the
uncertainty of a yet-to-be-measured trend m through
conventional error propagation techniques. A devia-
tion �m to the slope estimate is caused by uncertainty
�di in the data:

�m � ��
j�1

N

�tj � t �2��1

�
i�1

N

�di �ti � t �. �2�

The mean-square estimate of the uncertainty in the
slope �(�m)2� is

���m�2� ���
k�1

N

�tk � t �2��2

�
i�1

N

�
j�1

N

�ti � t ��tj � t ���di �dj�.

�3�

Typically in time series analysis, the uncertainty in the
data is understood to be completely uncorrelated,
namely, that ��di �dj� � 	2�i,j, where �i,j is the Kro-
necker delta function. In climate signal detection this
does not hold because there is serial correlation in the
time series (von Storch and Zwiers 1999).

The fluctuations of the climate system are not white
noise: they have associated length and time scales. A
temporal anomaly of the climate system is bound to last
a finite amount of time, and if that amount of time is
comparable to or greater than the interval between
data points dt � ti
1 � ti, then the expectation value
��di �dj� takes the following form:

��di �dj� � �var
2 Corri�j�var�, �4�

where Corrn(var) is the correlation function of natural
variability at lag n dt in time and 	2

var is the zero-lag
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variance associated with natural variability. (By natural
variability, we mean all the naturally occurring varia-
tions internal to the climate thought to not be associ-
ated with the response to a prescribed forcing.) A simi-
lar argument holds for measurement uncertainty. It is
very likely that an uncertainty in measurements of a
climate benchmark instrument lasts a finite amount of
time as well, and therefore errors at near-adjacent in-
stances in time may be correlated. This appears as an
extra term in the expectation value ��di �dj�:

��di �dj� � �var
2 Corri�j�var� 
 �meas

2 Corri�j�meas�, �5�

where 	meas is the measurement uncertainty and
Corrn(meas) is its time-lagged correlation function.

We simplify the summations in Eq. (3) after inserting
Eq. (5), setting j � i 
 �, and summing over �. Except
in the immediate vicinity of the first and last elements
of the time series, the uncertainty in the estimate of the
trend becomes

���m�2� � ��
k�1

N

�tk � t �2��1 ��var
2 �

����

�

Corr��var�


 �meas
2 �

����

�

Corr��meas��. �6�

The summations are exactly the normalized Fourier
transforms of the natural variability and of the mea-
surement uncertainty time-lagged covariance functions
at zero frequency, and so they can be rewritten in terms
of correlation times for the natural variability �var and
for the measurement uncertainty �meas:

�var  dt �
����

�

Corr��var�, �7�

�meas  dt �
����

�

Corr��meas�. �8�

While infinite lags in these correlation functions are not
practically realizable, we anticipate that the only sig-
nificant lags will be no greater than a few years for
decadal-scale trend detection. To illustrate why Eqs. (7)
and (8) are meaningful time constants, consider the
case of smoothing of a serially uncorrelated random
process. A serially uncorrelated random process has an
autocorrelation of 1 at zero lag and an autocorrela-
tion of 0 otherwise. If it is smoothed with a boxcar filter
with width T, the autocorrelation function becomes tri-
angular. It is 1 at zero lag and linearly drops to 0 at 
T
and �T lag. The summation of that correlation function
given by Eq. (7), or the integral of the autocorrelation
function in lag time, is exactly �var � T. See Fig. 1 for an
illustration.

We note for an unbroken but discretized time series
ti that

�
i�1

N

�ti � t �2 � �dt�2 �N3 � N ��12. �9�

If we assume a long time series (N k 1), then the
uncertainty in the determination of the trend in the
data reduces to

���m�2� � 12��t��3��var
2 �var 
 �meas

2 �meas�, �10�

FIG. 1. The time constant �var of a smoothed random process. (a) A time series of serially uncorrelated, normally distributed random
data with std dev of 10 (points) and the smoothed data after applying a boxcar smoothing with a width of 100 (solid curve). (b) The
autocorrelations as a function of lag for the data points (dashed line) and for the smoothed data (solid line). The area under the solid
line is �100. By definition, the area under the solid curve in (b) is �var. Theoretically, the constant �var of Eq. (7) is estimated to be the
width of the boxcar filter.
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where �t � N dt is the length of the time series. Equa-
tion (10) is useful both for deriving science require-
ments for climate benchmark missions and for estimat-
ing the signal-to-noise ratio in detecting climate signals.

Equation (10) bears a simple interpretation. It is ob-
vious that the longer the time series, the easier it should
be to distinguish a trend from natural variability (and
measurement uncertainty). We call this the baseline
effect. If we have just two data separated by �t in time,
the uncertainty in the trend determination is just the
uncertainty in the measurements divided by the base-
line �t. The mathematical expression for this is |�m| �
	var/�t, wherein the error in the determination of the
slope is inversely proportional to the baseline of the
time series. Advantage is gained, though, from the fact
that a continuous time series offers the possibility of
averaging out some of the natural variability. We call
this the averaging effect. The advantage is proportional
to the inverse square root of the number of independent
measurements in the time series. Because fluctuations
associated with natural variability in the climate system
last about a correlation time �var, the number of inde-
pendent measurements in the time series is �t/�var. Put-
ting the baseline and averaging effects together, the
error in the slope becomes |�m| � 	var/�t � ��var/�t,
in agreement with Eq. (10).

3. Accuracy requirements

A series of climate benchmark missions will be used
to detect trends in the climate system of any of a variety
of quantities. Before a climate benchmark is designed it
is customary to estimate the size of the trend mest. We
define the factor s to be the signal-to-noise ratio of
detection s  mest/|�m|, and the greater the s the greater
the confidence with which one can declare a measured
trend statistically different from zero. The signal-to-
noise ratio s is also the inverse of the fractional preci-
sion of the estimate of a trend in a time series of data.
We estimate the time it takes for a signal to emerge
above natural variability and measurement uncertainty
with a signal-to-noise ratio s (s � mest/ |�m|),

�t � �12s2

mest
2 �var

2 �var�1�3

�1 
 f 2�1�3, �11�

where the measurement uncertainty factor f is

f 2 � ��meas
2 �meas����var

2 �var�. �12�

From Eq. (11) it is clear that there is a lower bound
on the time it takes to detect a signal with a prescribed
level of confidence that is dictated by nature alone, and
measurement uncertainty amplifies that detection time

only in proportion to natural variability. The cube-root
quantity in square brackets in Eq. (11) gives the mini-
mum time to detect a climate signal, which can be easily
seen by setting the measurement uncertainty, and
hence f, to zero. One consequence of a full consider-
ation of the correlation time constant of natural vari-
ability is that detection time remains unchanged after
smoothing a time series of data. By smoothing data, one
can reduce the departures (	var) from a fitted line by
the inverse square root of the smoothing interval, but
the effective increase in the time constant of the depar-
tures [�var as defined by Eq. (7)] from the fitted line
cancels the reduction in departures when considering
the two in combination through the product 	2

var�var.
Second, from Eq. (11) it is also clear that measure-

ment uncertainty amplifies the time to detection only
when considered in direct relation to natural variability
(through the factor f ). If one requires that f � 0.5,
then the time to detection is only increased by �8%
over what nature allows. If one assumes that the cor-
relation time constant of the measurement uncertainty
is the lifetime of the climate benchmark instrument in
question, then the accuracy requirement for the mission
must be inversely proportional to the square root of the
instrument lifetime. The constant of proportionality
	var��var is dictated by nature in the form of the natu-
ral variability of the climate system.

Third, from Eq. (11) it is also clear that detection
time is decreased when the time constant associated
with measurement uncertainty is decreased. The time
constant associated with measurement uncertainty
�meas is difficult to quantify, so we use the “worst-case
scenario” concept described in the introduction to ar-
gue for its magnitude. In short, a dataset can be no
more credible (or accurate) than one can experimen-
tally demonstrate. If an instrument is designed to be
traceable to international standards (Pollock et al.
2003) with uncertainty 	meas, it is possible that the re-
sidual difference between truth and measurement
can wander within the limits of 	meas during the life-
time of the mission, and this would certainly aid the
cause of detection by effectively decreasing the product
	2

meas�meas [see Eq. (8)]. It is impossible, though, to ex-
perimentally demonstrate that the residual difference
between truth and measurement wanders on time
scales shorter than the mission lifetime, because no
measurement can be made with an uncertainty smaller
than 	meas. On the other hand, if the residual difference
between truth and calibrated measurement persists for
the duration of a satellite mission, then the uncertainty
in the determination of the estimated trend is greatly
enhanced through the product 	2

meas�meas. It is impos-
sible to demonstrate experimentally that the residual
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difference between the truth and measurement remains
constant over an instrument’s lifetime, but because the
latter case is the worst-case scenario, which one cannot
disprove experimentally; we argue that �meas must be
the mission lifetime.

4. Example: Upper-air temperature

As an example, we assume that a satellite-borne cli-
mate benchmark instrument obtains global average
temperature measurements centered at 500 hPa. We
wish to assess the dependence of a global warming de-
tection time given two possible instrument lifetimes
(�meas � 2, 6 yr) and an array of possible accuracy re-
quirements for instrument uncertainty (	meas). We wish
to test climate models by constraining the sensitivity of
the climate to an uncertainty of 20%, so we set s � 5.

In Table 1 we give s � 5 detection times for a global
warming signal of m � 0.2 K decade�1. We assume that
natural variability has 	var � 0.18 K with time constant
�var � 1.54 yr for the global average temperature of the
500-hPa surface, consistent with a realistic preindustrial
control run of the Met Office’s Third Hadley Centre
Coupled Ocean–Atmosphere General Circulation
Model (HadCM3), taken from the Third Coupled
Model Intercomparison Project (CMIP3) archive of cli-
mate model runs hosted by the Program for Climate
Model Diagnosis and Intercomparison (PCMDI). The
minimum detection time is found to be 33.4 yr. A series
of climate benchmark missions, each with a 2-yr life-
time, clearly has shorter detection times than the series
of missions with 6-yr lifetimes. If one chooses to follow
a f � 0.5 rule for a science requirement, the detection
time becomes 36.0 yr, just 2.6 yr over the minimum;
the series of 2-yr missions must have an accuracy of
0.079 K, and the series of 6-yr missions must have an
accuracy of 0.046 K. [If natural variability is uncorre-

lated from year to year (�var � 1 yr), then the minimum
time to detection would be 29.0 yr.]

5. Conclusions

Using standard linear regression and error propaga-
tion techniques, we have derived a formula that can be
used to compute accuracy requirements for a climate
benchmark mission. The requirements relate measure-
ment uncertainty and instrument lifetime directly to the
natural variability of the climate and the correlation
time scale of that variability. Explicitly, those require-
ments are governed by Eq. (12) with f � 0.5.

We have found that more precise trend estimates are
associated with shorter instrument lifetimes given the
same measurement uncertainty. This is best understood
by a simple example. If one desires a precise trend
estimate over a 20-yr time series of data, flying 10
satellites with a 2-yr lifetime is preferred to flying
4 satellites with a 5-yr lifetime. The reason is that mea-
surement uncertainties associated with the satellites’ in-
struments can be assumed to be uncorrelated, and thus
average out with more satellites. In the absence of natu-
ral variability, the uncertainty in trend determination
from the 10-satellite time series will be a factor of
��10/4 less than the trend determination from the
4-satellite time series.

Other factors enter when establishing accuracy re-
quirements for a mission. One must decide acceptable
signal detection times given the expense involved in
deploying climate benchmark satellite instruments. The
minimum detection time dictated by nature must be
considered. While shorter lifetimes (and hence more
frequent deployment) for satellite instruments de-
creases detection times, the increase in the number of
satellite instruments will dramatically inflate the ex-
pense of a signal detection program. On the other hand,
the shorter lifetime missions generally require less ac-
curate instruments, which are expected to be lower in
cost per instrument than more accurate (and longer
lifetime) instruments.
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TABLE 1. Dependence of signal detection time on measurement
uncertainty (	meas) and instrument lifetime (�meas) is shown. An
interannual variability of 500-hPa temperature of 	var � 0.18 K
with a correlation time constant of �var � 1.54 yr and a trend of m
� 0.2 K decade�1 is assumed.

Measurement
uncertainty
(	meas) (K)

Detection time
(�meas � 2 yr)

(yr)

Detection time
(�meas � 6 yr)

(yr)

0.00 33.4 33.4
0.02 33.6 34.0
0.05 34.5 36.5
0.10 37.4 43.5
0.20 46.0 60.1
0.50 74.4 105.1
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