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Abstract

The historical surface temperature dataset HadCRUT provides a record of surface temper-
ature trends and variability since 1850. A new version of this dataset, HadCRUT3, has been
produced; benefiting from recent improvements to the sea-surface temperature dataset which
forms its marine component, and from improvements to the station records which provide the
land data. A comprehensive set of uncertainty estimates has been derived to accompany the
data: estimates of measurement and sampling error, temperature bias effects, and the effect
of limited observational coverage on large-scale averages have all been made. Since the mid-
20th century the uncertainties in global and hemispheric mean temperatures are small and the
temperature increase greatly exceeds its uncertainty. In earlier periods the uncertainties are
larger, but the temperature increase over the 20th century is still significantly larger than its
uncertainty.

1 Introduction

The historical surface tempera-
ture dataset HadCRUT [Jones, 1994,
Jones & Moberg, 2003] has been exten-
sively used as a source of information
on surface temperature trends and vari-
ability [Houghton et al., 2001]. Since the
last update, which produced HadCRUT2
[Jones & Moberg, 2003], important improve-
ments have been made in the marine com-
ponent of the dataset [Rayner et al., 2006].
These include the use of additional obser-
vations, the development of comprehensive
uncertainty estimates, and technical improve-
ments that enable, for instance, the production
of gridded fields at arbitrary resolution.

This paper describes work to produce a new
dataset version, HadCRUT3, which will extend
the advances made to the marine data to the
global dataset. These new developments in-

clude improvements to: the land station data,
the process for blending land data with ma-
rine data to give global coverage, and the sta-
tistical process of adjusting the variance of the
gridded values to allow for varying numbers of
contributing observations. Results and uncer-
tainties for the new blended, global dataset,
called HadCRUT3, are presented.

2 Land-surface data

2.1 Station data

The land-surface component of HadCRUT
is derived from a collection of homogenised,
quality-controlled, monthly-average tempera-
tures for 4349 stations. This collection has
been expanded and improved for use in the new
dataset.

1



2.1.1 Additional stations and data

New stations and data were added for Mali,
the Democratic Republic of Congo, Switzer-
land [Begert et al., 2005] and Austria. Data
for 16 Austrian stations were completely re-
placed with revised values. A total of 29 Mali
series were affected: 5 had partial new data,
8 had completely new data, and 16 were new
stations. Five Swiss stations were updated for
the period 1864–2001 [Begert et al., 2005]. 33
Congolese stations were affected: 13 were new
stations, and 20 were updates to existing sta-
tions.

As well as the new stations discussed above,
additional monthly data have been obtained
for stations in Antarctica [Turner et al., 2005],
while additional data for many stations have
been added from the National Climatic Data
Centre publication Monthly Climatic Data for
the World.

2.1.2 Quality control

Much additional quality control has
also been undertaken. A comparison
[Simmons et al., 2004] of the Climatic Re-
search Unit (CRU) land temperature data
with the ERA-40 reanalysis found a few areas
where the station data were doubtful, and
this was augmented by visual examination of
individual station records looking for outliers.
Some bad values were identified and either
corrected or removed. Only a small fraction
of the data needed correction, however; of the
more than 3.7 million monthly station values,
the ERA-40 comparison found about 10
doubtful grid boxes and the visual inspection
about 270 monthly outliers.

Checking the station data for identical se-
quences in all possible station pairs turned up
53 stations which were duplicates of others.
These duplicates have arisen where the same
station data are assimilated into the archive

from two different sources, and the two sources
give the same station but with different names
and WMO identifiers. The duplicate stations
were merged and duplicate temperature data
were deleted.

Also the station normals and standard de-
viations were improved. The station nor-
mals (monthly averages over the normal pe-
riod 1961–90) are generated from station data
for this period where possible. Where there
are insufficient station data to achieve this
for the period, normals were derived from
WMO values [WMO, 1996] or inferred from
surrounding station values [Jones et al., 1985].
For 617 stations, it was possible to re-
place the additional WMO normals (used in
[Jones & Moberg, 2003]) with normals derived
from the station data. This was made possible
by relaxing the requirement to have data for
four years in each of the three decades in 1961–
90 (the requirement now is simply to have at
least 15 years of data in this period), so reduc-
ing the number of stations using the seemingly
less reliable WMO normals. As well as making
the normals less uncertain (see the discussion
of normal error below), these improved nor-
mals mean that the gridded fields of tempera-
ture anomalies are much closer to zero over the
normal period than was the case for previous
versions of the dataset.

Figure 1 shows the locations of the stations
used, and indicates those where changes have
been made.

2.2 Gridding

To interpolate the station data to a regular grid
the methods of [Jones & Moberg, 2003] are fol-
lowed. Each grid-box value is the mean of all
available station anomaly values, except that
station outliers in excess of five standard devi-
ations are omitted.

Two changes have been made in the grid-
ding process. The station anomalies can
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Figure 1: Land station coverage. Small black circles mark all stations, green circles mark
deleted stations, blue circles mark stations added, and red circles mark stations edited. Many
station edits are minor changes: involving, for instance, the correction of a single outlier.

3



now be gridded to any spatial resolution, in-
stead of being limited to a 5◦ × 5◦ resolu-
tion; this simplifies comparison of the grid-
ded data with General Circulation Model
(GCM) results. Also previous versions of
the dataset did some infilling of missing grid-
box values using data from surrounding grid
boxes [Jones et al., 2001]. This is no longer
done, allowing the attribution of an uncer-
tainty to each grid-box value. The resulting
gridded land-only dataset has been given the
name CRUTEM3. The previous version of
this dataset, CRUTEM2, started in 1851: in
CRUTEM3 the start date has been extended
back to 1850 to match the marine data (section
3).

Figure 2 shows a gridded field for an exam-
ple month, at the standard 5◦ × 5◦ degree res-
olution. For comparison with GCM results,
or for regional studies of areas where obser-
vations are plentiful, it can be useful to per-
form the gridding at higher resolution. Fig-
ure 3 shows a gridded field for the same exam-
ple month, at the resolution of the HadGEM1
model [Johns et al., 2004], but only for North
America.

2.3 Uncertainties

To use the data for quantitative, statistical
analysis, for instance a detailed comparison
with GCM results, the uncertainties of the
gridded anomalies are a useful additional field.
A definitive assessment of uncertainties is im-
possible, because it is always possible that
some unknown error has contaminated the
data, and no quantitative allowance can be
made for such unknowns. There are, however,
several known limitations in the data, and es-
timates of the likely effects of these limitations
can be made [Rumsfeld, 2004]. This means
that uncertainty estimates need to be accom-
panied by an error model: a precise description
of what uncertainties are being estimated.

Uncertainties in the land data can be divided
into three groups:

Station Error the uncertainty of individual
station anomalies,

Sampling Error the uncertainty in a grid-
box mean caused by estimating the mean
from a small number of point values,

Bias Error the uncertainty in large-scale
temperatures caused by systematic
changes in measurement methods.

2.3.1 Station Errors

The uncertainties in the reported station
monthly mean temperatures can be further sub
divided. Suppose

Tactual = Tob + εob + CH + εH + εRC (1)

where Tactual is the actual station mean
monthly temperature, Tob is the reported tem-
perature, εob is the measurement error, CH is
any homogenisation adjustment that may have
been applied to the reported temperature and
εH is the uncertainty in that adjustment, and
εRC is the uncertainty due to inaccurate cal-
culation or miss-reporting of the station mean
temperature.

The values being gridded are anomalies, cal-
culated by subtracting the station normal from
the observed temperature, so errors in the sta-
tion normals must also be considered.

Aactual = Tob−TN + εN + εob + CH + εH + εRC

(2)
where Aactual is the actual temperature
anomaly, TN is the estimated station normal,
and εN is the error in TN .

The basic station data include normals and
may have had homogenisation adjustments ap-
plied, so they provide Tob + CH and TN ; also
needed are estimates for εob, εH , εN , and εRC .
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Figure 2: CRUTEM3 anomalies (◦C) for January 1969 (global, 5◦ × 5◦ )

-10
-5
 0
 5
 10

-150 -140 -130 -120 -110 -100 -90 -80 -70 -60
 20

 25

 30

 35

 40

 45

 50

 55

 60

Figure 3: CRUTEM3 anomalies (◦C) for January 1969 (North America, HadGEM1 model grid
(1.875◦ × 1.25◦))
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Measurement error (εob) The random er-
ror in a single thermometer reading is about
0.2◦C (1 σ) [Folland et al., 2001]; the monthly
average will be based on at least two readings a
day throughout the month, giving 60 or more
values contributing to the mean. So the er-
ror in the monthly average will be at most
0.2/

√
60 = 0.03◦C and this will be uncorre-

lated with the value for any other station or
the value for any other month.

There will be a difference between the true
mean monthly temperature (i.e. from 1 minute
averages) and the average calculated by each
station from measurements made less often;
but this difference will also be present in the
station normal and will cancel in the anomaly.
So this doesn’t contribute to the measurement
error. If a station changes the way mean
monthly temperature is calculated it will pro-
duce an inhomogeneity in the station tem-
perature series, and uncertainties due to such
changes will form part of the homogenisation
adjustment error.

Homogenisation adjustment error (εH)
Inhomogeneities are introduced into the sta-
tion temperature series by such things as
changes in the station site, changes in mea-
surement time, or changes in instrumentation.
The station data that are used to make Had-
CRUT have been adjusted to remove these in-
homogeneities, but such adjustments are not
exact — there are uncertainties associated with
them.

For some stations both the adjusted and un-
adjusted time-series are archived at CRU and
so the adjustments that have been made are
known [Jones et al., 1985, Jones et al., 1986,
Vincent & Gullet, 1999], but for most stations
only a single series is archived, so any adjust-
ments that might have been made (e.g. by Na-
tional Met. services or individual scientists)
are unknown.

Making a histogram of the adjustments ap-
plied (where these are known) gives the solid
line in figure 4. Inhomogeneities will come in
all sizes, but large inhomogeneities are more
likely to be found and adjusted than small
ones. So the distribution of adjustments is bi-
modal, and can be interpreted as a bell-shaped
distribution with most of the central, small,
values missing.

Hypothesising that the distribution of ad-
justments required is Gaussian, with a stan-
dard deviation of 0.75◦C gives the dashed line
in figure 4 which matches the number of adjust-
ments made where the adjustments are large,
but suggests a large number of missing small
adjustments. The homogenisation uncertainty
is then given by this missing component (dot-
ted line in figure 4), which has a standard de-
viation of 0.4◦C. This uncertainty applies to
both adjusted and unadjusted data, the former
have an uncertainty on the adjustments made,
the latter may require undetected adjustments.

The distribution of known adjustments is
not symmetric — adjustments are more likely
to be negative than positive. The most
common reason for a station needing adjust-
ment is a site move in the 1940-60 period.
The earlier site tends to have been warmer
than the later one — as the move is often
to an out of town airport. So the adjust-
ments are mainly negative, because the ear-
lier record (in the town/city) needs to be
reduced [Jones et al., 1985, Jones et al., 1986].
Although a real effect, this asymmetry is small
compared with the typical adjustment, and
is difficult to quantify; so the homogenisation
adjustment uncertainties are treated as being
symmetric about zero.

The homogenisation adjustment applied to
a station is usually constant over long periods:
the mean time over which an adjustment is
applied is nearly 40 years [Jones et al., 1985,
Jones et al., 1986, Vincent & Gullet, 1999].
The error in each adjustment will therefore be
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Figure 4: Distribution of station homogeneity adjustments (◦C). The solid line is the distribu-
tion of the adjustments known to have been made (763 adjustments, from [Jones et al., 1985,
Jones et al., 1986, Vincent & Gullet, 1999]), the dashed line is a hypothesised distribution of
the adjustments required, and the dotted line is the difference - and so the distribution of
homogeneity adjustment error.
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constant over the same period. This means
that the adjustment uncertainty is highly
correlated in time: the adjustment uncertainty
on a station value will be the same for a
decadal average as for an individual monthly
value.

So the homogenisation adjustment uncer-
tainty for any station is a random value taken
from a normal distribution with a standard de-
viation of 0.4◦C. Each station uncertainty is
constant in time, but uncertainties for differ-
ent stations are not correlated with one an-
other (correlated inhomogeneities are treated
as biases, see below). As an inhomogeneity
is a change from the conditions over the cli-
matology period (1961–90), station anomalies
will have no inhomogeneities during that pe-
riod unless there is a change sometime during
those 30 years. Consequently these adjustment
uncertainty estimates are pessimistic for that
period.

Figure 4 also demonstrates the value of mak-
ing homogenisation adjustments. The dashed
line is an estimate of the uncertainties in the
unadjusted data, and the dotted line an esti-
mate of the uncertainties remaining after ad-
justment. The adjustments made have reduced
the uncertainties considerably.

Normal error (εN) For most stations, the
station normal is calculated from the monthly
temperatures for that station over the normal
period (1961–90). So the uncertainty in the
normal consists of measurement and sampling
error for that data. The measurement error
will be a small fraction of the monthly mea-
surement error and can be neglected, so only
the sampling error is important.

The station temperature in each month dur-
ing the normal period can be considered as the
sum of two components: a constant station
normal value (C) and a random weather value
(w, with standard deviation σi). If data for a

station are available for N of the 30 possible
months during the period from which the nor-
mals are taken, and the ws are uncorrelated;
then for stations where C is estimated as the
mean of the available monthly data, the un-
certainty on C is σi/

√
N . Testing this model

by selecting stations where complete data are
available for the climatology period and look-
ing at the effect on the normals of using only a
subset of the data confirmed that the autocor-
relation is small and the model is appropriate.

The station normals used fall into three
groups [Jones & Moberg, 2003]. The first
group are those where data are available for
all months in 1961–90; these normals are given
an uncertainty of σi/

√
30. The second group

are those where data are available for at least
15 years in 1961–90 (enough data to estimate
a normal); these normals are given an un-
certainty of σi/

√
N where N is the number

of years for which there is data. The third
group are those where too few data are avail-
able in 1961–90 to estimate a normal. For some
of these stations WMO normals have been
used [WMO, 1996] and experience has shown
that these normals are likely to have problems
[Jones & Moberg, 2003]. The process of data
improvement discussed in section 2.1.2 also al-
lowed the generation of new normals for 617
such stations. Comparison of the old and new
normals for these stations suggested that the
uncertainty in the WMO normals was about
0.3σi.

Calculation and reporting error (εRC)
The station data used in this analysis may have
been extensively processed before being added
to the CRU archive. The monthly mean tem-
perature values will have been calculated by
averaging 60 or more sub-daily measurements.
Where this calculation is done manually it can
introduce an error. The transmission of the
station data to the CRU archive requires at
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least one cycle of encoding, transcribing and
decoding the data, and this process may also
introduce an error.

Where such errors are persistent they will
introduce an inhomogeneity into the data for a
station, and so are included in the homogeni-
sation adjustment error εH . So the calculation
and reporting error (εRC) comprises only the
random and uncorrelated cases.

Calculation and reporting errors can be large
(changing the sign of a number and scaling it
by a factor of 10 are both typical transcrip-
tion errors; as are reporting errors of 10◦C (e.g.
putting 29.1 for 19.1)) but almost all such er-
rors will be found during quality control of the
data. Those errors that remain after quality
control will be small, and because they are also
uncorrelated both in time and in space their
effect on any large scale average will be negli-
gible. For these reasons εRC is not considered
further.

Combining station error components
For each station, the observational, homogene-
ity adjustment, and normal uncertainties are
independent; so estimates of each can be com-
bined in quadrature to give an estimate of the
total uncertainty for each station.

The grid-box anomaly is the mean of the n
station anomalies in that grid box, so the grid-
box station uncertainty is the root mean square
of the station errors, multiplied by 1/

√
n. The

spatial patterns visible in the station error field
(figure 5) are dominated by the distribution of
the mean station standard deviation. This is
larger in the high-latitudes and in the winter,
and smaller in the tropics and in the summer;
so for the month shown (January) the station
error is largest for the northern high latitudes.
A secondary effect is a reduction in areas with a
large number of observations. In North Amer-
ica, Europe, and south-eastern Australia, ob-
servations are plentiful and so the station error

is reduced.

2.3.2 Sampling error

Even if the station temperature anomalies had
no error, the mean of the station anomalies in
a grid box would not necessarily be equal to
the true spatial average temperature anomaly
for that grid box. This difference is the sam-
pling error; and it will depend on the number
of stations in the grid box, on the positions
of those stations, and on the actual variabil-
ity of the climate in the grid box. A method
for calculating sampling error is described in
[Jones et al., 1997], who recommend the equa-
tion

SE2 =
σ2

i r(1− r)
1 + (n− 1)r

. (3)

Where σ2
i is the mean station standard devi-

ation, n is the number of stations, and r is
the average inter-site correlation (itself esti-
mated from the data according to the meth-
ods of [Jones et al., 1997]). The method of
[Jones et al., 1997] has been used in this anal-
ysis.

The spatial distribution of sampling error
(see figure 6), like the station error, is domi-
nated by the station standard deviations and
the number of observations. The distribution
is very similar to that for the station error.

2.3.3 Bias error

Bias correction uncertainties are estimated fol-
lowing [Folland et al., 2001] who considered
two biases in the land data: urbanisation ef-
fects [Jones et al., 1990] and thermometer ex-
posure changes [Parker, 1994].

Urbanisation effects The previous analy-
sis of urbanisation effects in the HadCRUT
dataset [Folland et al., 2001] recommended a
1σ uncertainty which increased from 0 in 1900
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Figure 5: CRUTEM3 station errors (◦C) for January 1969
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Figure 6: CRUTEM3 sampling errors (◦C) for January 1969
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to 0.05◦C in 1990 (linearly extrapolated af-
ter 1990) [Jones et al., 1990]. Since then, re-
search has been published suggesting both that
the urbanisation effect is too small to de-
tect [Parker, 2004, Peterson, 2004], and that
the effect is as large as ≈ 0.3◦C/century
[Kalnay & Cai, 2003, Zhou et al., 2004].

The studies finding a large urbanisation
effect [Kalnay & Cai, 2003, Zhou et al., 2004]
are based on comparison of observations with
reanalyses, and assume that any difference is
entirely due to biases in the observations. A
comparison of HadCRUT data with the ERA-
40 reanalysis [Simmons et al., 2004] demon-
strated that there were sizable biases in the
reanalysis, so this assumption cannot be made,
and the most reliable way to investigate possi-
ble urbanisation biases is to compare rural and
urban station series.

A recent study of rural/urban station
comparisons [Peterson & Owen, 2005] sup-
ported the previously used recommendation
[Jones et al., 1990], and also demonstrated
that assessments of urbanisation were very
dependent on the choice of meta-data used
to make the rural/urban classification. To
make an urbanisation assessment for all the
stations used in the HadCRUT dataset would
require suitable meta-data for each station
for the whole period since 1850. No such
complete meta-data are available, so in this
analysis the same value for urbanisation
uncertainty is used as in the previous analysis
[Folland et al., 2001]; that is, a 1σ value of
0.0055◦C/decade, starting in 1900. Recent
research suggests that this value is reasonable,
or possibly a little conservative [Parker, 2004,
Peterson, 2004, Peterson & Owen, 2005]. The
same value is used over the whole land surface,
and it is one-sided: recent temperatures may
be too high due to urbanisation, but they will
not be too low.

Thermometer exposure changes Over
the period since 1850 there have been changes
in the design and siting of thermometer enclo-
sures; many early shelters can differ substan-
tially from the modern Stevenson-type screen.
It is sometimes possible to determine the time
of change by the homogeneity assessments dis-
cussed in section 2.3.1, but this is only possible
if changes at neighbouring stations are imple-
mented at different times. The bias errors in
this section, therefore, allow for the possible
simultaneous replacement across entire coun-
tries with Stevenson-type shelters. The pos-
sible effect of such changes was investigated
in [Parker, 1994], who concluded that there
was a possible difference between 1900 and the
present day of about 0.2◦C because of such ex-
posure changes. This was later expanded into
an error model in [Folland et al., 2001]: in the
tropics (20S–20N) the 1σ uncertainty range is
0.2◦C before 1930, and then decreases linearly
to zero in 1950. Outside the tropics the 1σ un-
certainty range is 0.1◦C before 1900 and then
decreases linearly to zero by 1930. This uncer-
tainty model is used here.

It is likely that further changes in thermome-
ter exposure have been taking place in recent
years, as Stevenson-type screens are replaced
with aspirated shelters. These changes are,
however, too recent to allow a quantitative as-
sessment of their effects and they are not in-
cluded in the CRUTEM3 error analysis.

2.3.4 Combining the uncertainties

The total uncertainty value for any grid box
can be obtained by adding the station error,
sampling error, and bias error estimates for
that grid box in quadrature. This gives the
total uncertainty for each grid box for each
month.

In practise, however, this combined uncer-
tainty is less useful than the individual com-
ponents. Most uses of the data set require
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not just an individual monthly grid-box value
but some spatial or temporal average of many
of them. When combining uncertainties onto
these larger scales it is necessary to allow for
correlations between the grid-box uncertain-
ties, and the three error components have dif-
ferent spatial and temporal correlation struc-
tures.

The sampling errors have little spatial or
temporal correlation. The station errors have
little spatial correlation, but because the two
main components (homogeneity adjustment
and normal uncertainties) stay the same for
each station for many consecutive months
they have almost complete temporal auto-
correlation. The bias errors are the same for
each grid box and each month, they have com-
plete temporal and spatial correlations.

The errors shown in figures 5 and 6 are for
5◦× 5◦ grid boxes. Changing the gridding res-
olution will change the uncertainties. Larger
grid-boxes will have a larger sampling error
if they contain the same number of observa-
tions, but typically increasing the grid-box size
will mean that each contains more stations and
the box-average uncertainties will be reduced.
Similarly, reducing the grid-box size would re-
duce the sampling error, except that smaller
grid boxes will often contain fewer stations,
which will increase the errors.

The combined effect of grid-box sampling er-
rors will be small for any continental-scale or
hemispheric-scale average (though the lack of
global coverage introduces an additional source
of sampling error, this is discussed in section
6.1). Combined station errors will be small for
large-scale spatial averages, but remain impor-
tant for averages over long periods of the same
small grid box. Bias errors are equally large on
any space or time scale.

3 Marine data

The marine data used are from the sea-
surface temperature dataset HadSST2
[Rayner et al., 2006]. This is a gridded dataset
made from in-situ ship and buoy observations
from the new International Comprehensive
Ocean-Atmosphere data set [Diaz et al., 2002,
Manabe, 2003, Woodruff et al., 2003]. This
dataset provides the same information for the
oceans as described above for the land. For
each grid box: mean temperature anomalies,
measurement and sampling error estimates,
and bias error estimates are available. The
datasets can be produced on a grid of any
desired resolution.

Previous versions of HadCRUT use the SST
dataset MOHSST6 [Parker et al., 1995]. The
new HadSST2 dataset is an improvement on
MOHSST6 for many reasons: it is based on an
enlarged and improved set of ship and buoy
observations, it includes a new climatology,
and the bias corrections needed for data be-
fore 1941 have been revisited. Also HadSST2
starts in January 1850 (as does HadCRUT3),
MOHSST6 and HadCRUT2 started in January
1856. Full details of all the improvements can
be found in [Rayner et al., 2006].

Blending a sea-surface temperature (SST)
dataset with land air temperature makes an
implicit assumption that SST anomalies are
a good surrogate for marine air temperature
anomalies. It has been shown, for example by
[Parker et al., 1994], that this is the case, and
that marine SST measurements provide more
useful data and smaller sampling errors than
marine air temperature measurements would.
So blending SST anomalies with land air tem-
perature anomalies is a sensible choice.

3.1 Uncertainties in the marine data

Like the land data, the marine dataset has
known errors: estimates have been made of
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the measurement and sampling error, and the
uncertainty in the bias corrections. The ma-
rine data are point measurements from mov-
ing ships, moored buoys, and drifting buoys,
so the anomalies for any one grid box come
in general from a different set of sources each
month. This means that marine data have no
equivalent of station errors or homogenisation
adjustments. The marine equivalent of the sta-
tion errors form part of the measurement and
sampling error, and adjustments for inhomo-
geneities are done by large scale bias correc-
tions.

The measurement and sampling error esti-
mates are based, like the land sampling error
(section 2.3.2), on the number of observations
in a grid box, on the variability of a single ob-
servation, and on the correlation between ob-
servations. The latter two parameters are esti-
mated from the gridded data for each grid box.
Details are given in [Rayner et al., 2006].

Only one bias correction is applied: over the
period 1850–1940, the predominant SST mea-
surement process changed from taking samples
in wooden buckets, to taking samples in canvas
buckets, to using engine room cooling water
inlet temperatures [Folland and Parker, 1995].
A bias correction is applied to remove the effect
of these changes on the SSTs. This correction
depends on estimates of the mix of measuring
methods in use at any one time, and of param-
eters such as the speed of the ships making the
measurements. An uncertainty has been esti-
mated for the correction; again, details are in
[Rayner et al., 2006].

As with the land data, the uncertainty es-
timates cannot be definitive: where there are
known sources of uncertainty, estimates of the
size of those uncertainties have been made.
There may be additional sources of uncertainty
as yet unquantified (see section 6.3).

4 Blending land and marine
data

To make a dataset with global coverage the
land and marine data must be combined. For
land-only grid boxes the land value is taken,
and for sea-only grid boxes the marine value;
but for coastal and island grid boxes the land
and marine data must be blended into a com-
bined average.

Previous versions of HadCRUT
[Jones, 1994, Jones & Moberg, 2003] blended
land and sea data in coastal and island grid
boxes by weighting the land and sea values by
the area fraction of land and sea respectively,
with a constraint that the land fraction cannot
be greater than 75% or less than 25%, to
prevent either data-source being swamped by
the other. The aim of weighting by area was
to place more weight on the more reliable
data source where possible. The constraints
are necessary because there are some grid
boxes which are almost all sea but contain one
reliable land station on a small island; and
some grid boxes which are almost all land but
also include a small sea area which has many
marine observations. Unconstrained weighting
by area would essentially discard one of the
measurements, which is undesirable.

The new developments described in this pa-
per provide measurement and sampling uncer-
tainty estimates for each grid box in both the
land and marine data sets. This means that
the land and marine data can be blended in
the way that minimises the uncertainty of the
blended mean. That is, by scaling according
to their uncertainties, so that the more reli-
able value has a higher weighting than the less
reliable.

Tblended =
ε2seaTland + ε2landTsea

ε2land + ε2sea
(4)

where Tblended is the blended average tempera-
ture anomaly, Tland and Tsea are the land and
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marine anomalies, εland is the measurement
and sampling error of the land data, and εsea

is the measurement and sampling error of the
marine data.

The resulting blended dataset for a sam-
ple month (figure 7) shows the coherency be-
tween the land and sea data: large scale regions
of positive or negative temperature anomalies
that cross land-sea boundaries show up clearly.
The land data weighting for all coastal and is-
land grid boxes with both land and sea data for
the same month (figure 8) shows that weight-
ing by uncertainties generally weights the ma-
rine data more highly where the marine data
are expected to be good (North Atlantic and
North Pacific coasts where there are many ma-
rine observations); and similarly weights the
land data more highly where it is the more re-
liable (in the Southern Hemisphere, notably in
Indonesia and the South Pacific where marine
observations are sparse). Note that the weight-
ing is continually varying with time as the data
availability changes.

As the land and marine errors are indepen-
dent, this choice of weighting gives the low-
est measurement and sampling error for the
blended mean, giving an error in the blended
mean of:

εblended =

√
ε2seaε

2
land

ε2land + ε2sea
. (5)

The measurement and sampling error for the
blended mean (figure 9) is the combined sta-
tion and sampling error over land (figures 5
and 6). Over the oceans the error distribu-
tion is dominated by variations in the num-
ber of observations: where marine observa-
tions are plentiful (North Atlantic, North Pa-
cific and the shipping lanes) the measurement
and sampling error is very small; in poorly
observed areas like the Southern Ocean, the
error is much larger. The errors for marine
grid boxes are much smaller than those for
land grid boxes because SST is less variable in

both space and time than land air temperature.
This difference is discussed in more detail in
section 6.2. The smaller SST errors mean that
the blended temperatures for coastal and is-
land grid boxes are dominated by the SST tem-
peratures. This is reasonable if it is assumed
that, in any grid box, the land temperature
and SST values for that box are each estimates
of the same blended temperature. In reality
this may not be true (see section 6.4) and an
area-weighted average might in some cases give
a more physically consistent average tempera-
ture. However, the choice of blending weight
makes very little difference to large scale av-
erages, so the extra complexity of a blending
algorithm which accounts for possible land-sea
temperature anomaly differences is not justi-
fied.

5 Variance adjustment

Assigning a grid-box anomaly simply as the
mean of the observational anomalies in that
grid box produces a good estimate of the ac-
tual temperature anomaly. But it has the dis-
advantage that the variance of the grid box
average is not constant in time or space; grid
boxes containing many observations will have
a low variance, and those with few observa-
tions a larger one. For some applications this
fluctuation in variance is undesirable. Het-
erogeneities in the variance affect estimates of
the covariance matrices which are used in EOF
techniques such as Optimal Averaging. They
also affect analyses of extreme monthly tem-
peratures and of changes in temperature vari-
ability through time.

For these reasons, previous versions of Had-
CRUT have included variance adjustments
[Jones et al., 2001]: alternative versions of the
gridded datasets with the grid-box anoma-
lies adjusted to remove the effects of chang-
ing numbers of observations. In producing a
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Figure 7: HadCRUT3 anomalies (◦C) for January 1969
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Figure 8: Land data blending weight for January 1969. (Greater emphasis on the land would
give numbers closer to one).
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Figure 9: HadCRUT3 measurement and sampling error (◦C) for January 1969

variance adjusted version of HadCRUT3 two
refinements have been made: the error esti-
mates for the gridded data have been used to
devise a simpler adjustment method applica-
ble to both land and marine data, and the ad-
justment process has been tested on synthetic
data to ensure that it does not introduce bi-
ases into the data. Details of the adjustment
method and the tests applied are given in ap-
pendix A. Variance adjusted versions have
been produced for HadCRUT3 and the ma-
rine and land datasets from which it is formed;
the adjusted datasets are named HadCRUT3v,
CRUTEM3v and HadSST2v. One advantage
of the new adjustment method is that it can
be applied to the entire dataset, so the vari-
ance adjusted datasets now also start in 1850.
The previous version of the variance adjusted
dataset, HadCRUT2v, started in 1870.

Variance adjustment is successful at the in-
dividual grid-box scale: comparison with syn-
thetic data shows that the inflation of the grid
box variance caused by the limited number
of observations can be removed without in-
troducing biases into the grid-box series. At
larger space scales, however, variance adjust-

ment does introduce a small bias into the data.
Whether variance adjusted or unadjusted data
should be used in an analysis depends on what
is to be calculated. If it is necessary that
grid-box anomalies have a spatially and tem-
porally consistent variance, then variance ad-
justed data should be used. Otherwise, better
results may be obtained using unadjusted data.
In particular, global and regional time-series
should be calculated using unadjusted data.

6 Analyses of the gridded
dataset

From the 5◦ × 5◦ gridded dataset and its com-
prehensive set of uncertainty estimates it is
possible to calculate a large variety of clima-
tologically interesting summary statistics and
their uncertainty ranges. Of this variety, global
and regional temperature time series probably
have the widest appeal, so some illustrative ex-
amples of these are presented here.
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6.1 Hemispheric and global time-
series

If the gridded data had complete coverage of
the globe or the region to be averaged, then
making a time series would be a simple pro-
cess of averaging the gridded data and mak-
ing allowances for the relative sizes of the grid
boxes and the known uncertainties in the data.
However, global coverage is not complete even
in the years with the most observations, and
it is very incomplete early in the record. In
general, global and regional area-averages will
have an additional source of uncertainty caused
by missing data.

To estimate the uncertainty of a large-
scale average owing to missing data the ef-
fect of sub-sampling on a known, complete
dataset is used. The NCEP/NCAR reanaly-
sis dataset [Kalnay et al., 1996] provides com-
plete monthly gridded surface air temperature
values for more than 50 years. To estimate the
missing data uncertainty of the HadCRUT3
mean for a particular month, the reanalysis
data for that calendar month in each of the 50+
years is sub-sampled to have the same cover-
age as HadCRUT3, and the difference between
the complete average and the sub-sampled av-
erage anomaly is calculated in each of the 50+
cases. The 2.5% and 97.5% values forming the
error range of the HadCRUT3 mean for that
month in the record are then estimated from
the standard deviation of the 50+ differences,
assuming that the differences are normally dis-
tributed. This procedure has the advantage
that it works for any region, so hemispheric
and regional time-series and their uncertain-
ties can be calculated as easily as global series.
Unlike sophisticated optimal methods such as
that used by [Folland et al., 2001], this process
makes no attempt to minimise coverage uncer-
tainties by using estimates of data covariances.
This means that the precision of large-scale av-
erages is less than that which could be achieved

with a more sophisticated method. But the
simple method has the advantage that the es-
timated uncertainty on the large scale average
due to limited coverage is independent of all
the other sources of uncertainty. So it remains
straightforward to calculate both the total un-
certainty on any large-scale average and all of
its components (figure 10).

This approach can also be used to give cover-
age uncertainties on longer timescales. Annual
coverage uncertainties can be made by convert-
ing both the HadCRUT3 data and the reanal-
ysis data to annual averages and then subsam-
pling the annual reanalysis data with the cov-
erage of the annual HadCRUT3 data. Simi-
larly, estimates can be made of uncertainties
of coverage uncertainties for smoothed annual
or decadal averages.

The grid-box sampling and measurement er-
rors are greatly reduced when the gridded data
are averaged into large-scale means, so the
only other important uncertainty component
of global and regional time-series is that due
to the biases in the data. This is dealt with by
making datasets with allowances for bias un-
certainties incorporated. Generating averages
from datasets with bias allowances set at the
2.5% and 97.5% levels provides a 95% error
range from bias uncertainties in the resulting
averages.

6.1.1 Global averages

The global temperature is calculated as the
mean of the northern and southern hemi-
sphere series (to stop the better-sampled
northern hemisphere from dominating the av-
erage). Figure 10 shows the global tempera-
ture anomaly time series calculated from Had-
CRUT3 with these error components. The
monthly averages are dominated by short-term
fluctuations in the anomalies; combining the
data into annual averages produces a clearer
picture, and smoothing the annual averages
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Figure 10: HadCRUT3 global temperature anomaly time-series (◦C) at monthly (top), annual
(centre), and smoothed annual (bottom) resolutions. The solid black line is the best estimate
value, the red band gives the 95% uncertainty range caused by station, sampling and measure-
ment errors; the green band adds the 95% error range due to limited coverage; and the blue
band adds the 95% error range due to bias errors.
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with a 21-term binomial filter highlights the
low-frequency components and shows the im-
portance of the bias uncertainties. The bias
uncertainties are zero over the normal pe-
riod by definition. The dominant bias un-
certainties are those due to bucket correction
[Rayner et al., 2006] and thermometer expo-
sure changes [Parker, 1994] both of which are
large before the 1940s.

A notable feature of the global time series is
that the uncertainties are not always larger for
earlier periods than later periods. The uncer-
tainties are smaller in the 1850s than in the
1920s, at least for the smoothed series, de-
spite the much larger number of observations
in the 1920s. The station, sampling and mea-
surement, and coverage errors (red and green
bands in figure 10) depend on the number
and distribution of the observations, and these
components of the error decrease steadily with
time as the number of observations increases.
These components also decrease with averag-
ing to larger space and time scales, so they are
smaller in the annual than the monthly series,
and smaller again in the smoothed annual se-
ries. The bias uncertainties, however, do not
reduce with spatial or temporal averaging, and
they are largest in the early 20th century; so
the smoothed annual series, where the uncer-
tainty is dominated by the bias uncertainties,
also has its largest uncertainty in this period.

The bias uncertainties are largest in the
early 20th century for two reasons: Firstly
the bias uncertainties in the marine data are
largest then: because the uninsulated canvas
buckets used in that period produced larger
temperature biases than the wooden buckets
used earlier (see [Rayner et al., 2006] for de-
tails). And also because the land tempera-
ture bias uncertainties (present before 1950)
are larger in the tropics than the extra-tropics,
so for these simple global averages, the bias un-
certainty depends on the ratio of station cover-
age in the tropics to that in the extra-tropics,

and this ratio is smaller in the 1850s than in
the 1920s.

6.1.2 Hemispheric averages

Comparing the smoothed mean temperature
time-series for the Northern Hemisphere and
Southern Hemisphere (figure 11) shows the dif-
ference in uncertainties between the two hemi-
spheres. The difference in the uncertainty
ranges for the two series stems from the very
different land/sea ratio of the two hemispheres.
The Northern Hemisphere has more land, and
so a larger station, sampling and measurement
error (figure 9 and section 6.2), but it has more
observations and so a smaller coverage uncer-
tainty. The bias uncertainties are also larger in
the Northern Hemisphere both because it has
more land (especially in the tropics where the
land biases are large), and because the SST
bias uncertainties are largest in the Northern
Hemisphere western boundary current regions
where the SST can be very different from the
air temperature ([Rayner et al., 2006]).

The difference between the two hemisphere
series has a smaller uncertainty than either
hemispheric value over much of the period
shown, because the bias errors, though un-
known, will be much the same in the two
hemispheres and so mostly cancel in the dif-
ference. So the previously observed increase in
the inter-hemispheric difference in the mid 20th

century (see, for example [Folland et al., 1986,
Kerr, 2005]) is shown to be significantly out-
side the uncertainties.

6.2 Differences between land and
marine data

Comparison of global average time series for
land-only and marine-only data (figure 12)
demonstrates both a marked agreement in the
temperature trends, and a large difference in
the uncertainties. There are much larger un-
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Figure 11: HadCRUT3 hemisphere temperature anomaly time-series (◦C); Northern (top),
Southern (middle) and difference (NH-SH, bottom). The solid black line is the best estimate
value, the red band gives the 95% uncertainty range caused by station, sampling and measure-
ment errors; the green band adds the 95% error range due to limited coverage; and the blue
band adds the 95% error range due to bias errors.
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Figure 12: Global average of land and marine components of HadCRUT3. (◦C); Land (top),
Sea (middle) and difference (Land-Sea, bottom). The solid black line is the best estimate value,
the red band gives the 95% uncertainty range caused by station, sampling and measurement
errors; the green band adds the 95% error range due to limited coverage; and the blue band
adds the 95% error range due to bias errors.
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certainties in the land data because the surface
air temperature over land is much more vari-
able than the SST. SSTs change slowly and
are highly correlated in space; but the land air
temperature at a given station has a lower cor-
relation with regional and global temperatures
than a point SST measurement, because land
air temperature (LAT) anomalies can change
rapidly in both time and space. This means
that one SST measurement is more informative
about large scale temperature averages than
one LAT measurement. This difference also
shows in the hemispheric differences (figure
11): the Southern Hemisphere (SH) series has
a similar uncertainty to the Northern Hemi-
sphere (NH) series despite there being many
more observations in the NH. This is because
a larger fraction of the SH is sea, so fewer ob-
servations are needed.

The difference between the land and sea tem-
peratures (figure 12, bottom) is not distin-
guishable from zero until about 1980. There
are several possible causes for the recent
increase: it could be a real effect: the
land warming faster than the ocean (this
is an expected response to increasing green-
house gas concentrations in the atmosphere
[Barnett et al., 2000], but it could also indi-
cate a change in the atmospheric circulation
[Parker et al., 1994]), it could indicate an un-
corrected bias in one or both data sources (see
section 6 of [Rayner et al., 2006]), or it could
be a combination of these effects. These issues
have not been pursued further here, but such
studies will form part of future work on land
and marine temperatures and their uncertain-
ties.

6.3 Comparison of global time series
with previous versions

Figure 13 shows time-series of the global aver-
age of the land data, the marine data, and the
blended dataset with their uncertainty ranges,

and compares them to the previous versions of
each dataset. The additions and improvements
made to the land data do not make any large
differences to the global land average, except
very early in the record where the uncertain-
ties are large. The new marine data, however,
do produce some sizable changes: refinements
to the climatology have produced an offset, and
new data have produced some other secular
changes in the series.

The differences between the old and new ma-
rine data series are sometimes outside the er-
ror range of the new series. Most of the dif-
ference is a constant offset due to changes to
the climatology, and uncertainties in the clima-
tology are not part of the error model for the
marine data. (In the land data climatologies
are estimated for each station, and as the mix
of stations in any one grid box changes with
time so does the climatology. So uncertainties
in the station climatology are a component of
the uncertainty in changes of gridded land tem-
perature anomalies. But for the marine data,
climatologies are specified for each grid box,
and they are constant in time, so uncertainties
in the marine climatology do not contribute
directly to uncertainties in changes in marine
temperature anomalies). But even after re-
moving the constant offset produced by the
climatology change, there are still differences
between the old and new SST series that are
larger than the assessed random and sampling
errors. These differences suggest the presence
of additional error components in the marine
data. At the moment, the nature of these er-
ror components is not known for certain, but
the main difference between the old and new
datasets is the use of different sets of obser-
vations [Rayner et al., 2006]. It seems likely
that different groups of observations may be
measuring SST in different ways even in recent
decades, and therefore there may be unresolved
bias uncertainties in the modern data. Quan-
tifying such effects will be a priority in future
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Figure 13: New dataset versions and their 95% uncertainty ranges (in blue), compared with
the previous version of each dataset (in red). The top panel shows the land data, the middle
panel the marine data, and the bottom panel the combined data.
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work on marine data.

6.4 Comparison with Central Eng-
land Temperature

The Central England Temperature series
(CET) is the longest instrumental tempera-
ture record in the world [Parker et al., 1992].
It records the temperature of a triangular por-
tion of England bounded by London, Hereford-
shire and Lancashire, and provides mean daily
temperature estimates back to 1772. The Had-
CRUT3 and CET series do use some of the
same stations, but of the 13 sites that make
some contribution to CRUTEM3 in the CET
region, no more than 2 also contribute to CET,
and there are always also stations contributing
to CET but not to CRUTEM3. So if CET
corresponds closely to the HadCRUT3 value
for the central England grid box, it suggests
that both series are correctly describing the
local temperature changes, and is not simply
a consequence of shared inputs. Recently, un-
certainty estimates have been derived for CET
since 1878 [Parker & Horton, 2005].

The area covered by CET is less than 1 grid
box in the 5◦×5◦ gridded CRUTEM3 dataset.
Comparing the CET data with the correspond-
ing grid box in CRUTEM3 (figure 14) shows
encouraging agreement: despite being based
on largely different observations, the two series
agree within their uncertainties.

Doing the same comparison using the full
HadCRUT3 data (blended land and sea) gives
a different picture (figure 15). The 5◦ × 5◦

grid box covering the CET region also contains
much of the Irish Sea and the English Channel;
both regions where there are many SST ob-
servations. Many SST observations mean that
the uncertainty on the SST monthly means is
small, so the blended value is biased towards
SST and has a small uncertainty. Adding
the SST data has reduced the agreement with
CET; and the uncertainty in the HadCRUT3

value is much smaller than the CRUTEM3 un-
certainty because there are a lot of SST obser-
vations around the British coast. The uncer-
tainty varies in time because, unlike the land
data, the number of SST observations changes
with time: the uncertainty increases in the
early part of the series and during the two
world wars are quite noticeable. This figure
demonstrates that the land and sea temper-
ature anomalies in one 5◦ × 5◦ grid box can
have sizable differences in their annual values,
although the longer-term changes are very sim-
ilar.

Because of these land-sea differences it will
sometimes be better to use the land and sea
specific data rather than the blended dataset.
For example when looking at paleo data from
tree-rings near coasts it is probably better
to use the land dataset CRUTEM3 than the
blended dataset HadCRUT3. Similarly for pa-
leo data from coastal corals the SST dataset
should be used.

7 Conclusions

A new version of the gridded historical sur-
face temperature dataset HadCRUT3 has been
produced. This dataset is a collaborative prod-
uct of scientists at the Met Office Hadley Cen-
tre (who provide the marine data), and at
the Climatic Research Unit at the University
of East Anglia (who provide the land-surface
data). The new dataset benefits from the im-
provements to the marine data described in
[Rayner et al., 2006] as well as the improve-
ments to the land data described in this pa-
per. But the principal advance over previ-
ous versions of the dataset [Jones et al., 2001,
Jones & Moberg, 2003] is in the provision of a
comprehensive set of uncertainties to accom-
pany the gridded temperature anomalies.

As well as variance adjustments (ad-
justments to the data to allow for the
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Figure 14: CRUTEM3 (for 50–55◦N , 0–5◦W ) comparison with CET (Error ranges are 95%).
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changing numbers of observations), fields
of measurement and sampling, and bias
uncertainty have been produced. All
the gridded datasets, and some time-series
derived from them, are available from
the websites http://www.hadobs.org and
http://www.cru.uea.ac.uk.

The gridded datasets start in 1850 because
there are too few observations available from
before this date to make a useful gridded field.
Many marine observations from the first half
of the 19th century are known to exist in log
books kept in the British Museum and the
U.K. National Archive, but these observations
have never been digitised. If these observa-
tions were available, it is likely that the grid-
ded datasets, and so information on surface cli-
mate change and variability, could be extended
by several decades.
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A Variance adjustment
method

The relationship between the variance in a grid
box and the variance of individual station ob-
servations is given by [Jones et al., 1997]

σ2
n =

σ̄2
i (1 + (n− 1)r̄)

n
, (6)

where σ2
n is the variance of the grid-box aver-

age, σ̄2
i is the mean variance of the individual

station time series that contribute to that grid-
box average and r̄ is the average correlation of
stations within the grid box. Two interesting
variables can be derived from this. The first is
the true grid-box variance, σ2

n=∞. That is the
variance the grid box average would have if it
contained an infinite number of observations

σ2
n=∞ = σ̄2

i r̄. (7)

The second is the sampling error, m2
s, equal

to the difference between equations 6 and 7

m2
s =

σ̄2
i (1− r̄)

n
. (8)

Equation 6 assumes that the time-series of
the grid-box anomaly is stationary. In fact,
the average temperature in an area defined by
a grid box exhibits natural variability on a va-
riety of time scales: a long-term trend (perhaps
due to global warming), inter-decadal variabil-
ity (perhaps due to modes like ENSO) and
higher-frequency natural variability. To ensure
that the series is stationary, the anomalies in
individual grid boxes were detrended using a
six-year running average centred on the month
of interest.

The detrended anomalies were then multi-
plied by an adjustment factor,

k =

√
σ2

n=∞
m2

total(n, t) + σ2
n=∞

(9)

where m2
total is the estimated random error -

a combination of sampling, measurement and
other errors - expressed as a function of the
number of observations, n, and time, t. For
marine data m2

total and σ2
n=∞ were as calcu-

lated as in [Rayner et al., 2006]. For land data
values for m2

total were calculated as in section
2.3 and the values of σ2

n=∞ were calculated
from equation 7 using the individual station
variances and the average correlations between
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them. After the adjustment factor was applied,
the smoothed series was added back to recover
the variance adjusted time series.

A.1 Test of the Method

If it is working well, variance adjustment
should reduce the random noise in the tem-
perature values introduced by having only
a limited number of observations, but leave
the real underlying temperature variations un-
changed. This can’t be tested using the ac-
tual HadCRUT3 data, as the distinction be-
tween real variations and noise is unknown.
To test the method, the pseudo-proxy method
of [von Storch et al., 2004] has been adapted
to instrumental data. A synthetic version of
HadCRUT3 has been made by adding noise to
subsampled GCM temperature data; the test
is then to see how well variance adjustment
recovers the original GCM data from the syn-
thetic HadCRUT3.

A.1.1 Making the synthetic dataset

A synthetic dataset was constructed using
an all forcings run [Tett et al., 2006] of the
HadCM3 [Gordon et al., 2000] GCM. Values
of r̄ for land data grid boxes were calculated
for the detrended model data following the pro-
cedure in [Jones et al., 1997]. In marine grid
boxes, values of r̄ were calculated in both time
and space to take into account the fact that
marine observations are point measurements
rather than monthly averages as in the land
data. The time component was calculated by
fitting an exponential to the lagged correla-
tions of monthly anomalies in a given grid box
and using the fitted correlation decay time to
estimate the average correlation across the grid
box. These were used to calculate estimated
station variances by assuming that the vari-
ance of the model temperature anomalies in a
grid box represented the variance in that grid

box for an infinite number of stations, σ2
n=∞.

In this instance the value of σ̄2
i can be easily ex-

tracted from equation 7. These average station
variances were then used to create a synthetic
time series for each grid box that showed vari-
ance fluctuations of a kind seen in the obser-
vational data. The variance of the time series
was inflated by adding random noise of vari-
ance, v2, calculated using

v2 =
σ̄2

i (1− r̄) + m2
m

n
(10)

where the n were a realistic distribution of
numbers of observations as obtained from the
historical records of monthly average temper-
atures. m2

m was an estimate of the measure-
ment error, which was assumed to be negligible
over land. Three realisations of the synthetic
data were created. They differed only in the
random numbers used to generate the random
noise which was added to the time series.

A.1.2 Comparing adjusted and true
data

The synthetic data were then run through the
variance adjustment algorithms and the vari-
ance of the output was compared to that of
the original model data (see figure 16). Before
variance adjustment the variance of an aver-
age land data grid box was overestimated by
around 11% and the variance of an average ma-
rine grid box by 180%. After variance adjust-
ment the variance of an average land data grid
box was found to be underestimated by less
than 2% and the variance of an average ma-
rine data grid box was underestimated by 5%.
In the marine case, discrepancies from the true
variance can be larger than this in individual
grid boxes, although in all cases the adjusted
variance is closer to the true value than the
unadjusted variance.

In individual grid boxes variance adjustment
typically brings the synthetic data closer to
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Figure 16: Running 10 year standard deviations (◦C, left axis scale) are shown for four grid
boxes. The blue line shows the standard deviation of the perfect model data masked to have
the same coverage as the data. The red line shows the standard deviation of the synthetic data
before variance adjustment and the black line shows the standard deviation of the synthetic
data after variance adjustment. The number of observations is also shown (right hand scale).
The top two panels are marine grid boxes, the lower two are land grid boxes
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Figure 17: (a) Annual average sea surface temperatures from a grid box in the Tropical Atlantic
for the original model data (magenta) and three realisations of the synthetic data before (cyan)
and after (black) variance adjustment. (b) Shows the difference between the unadjusted syn-
thetic data and model data (cyan) and the difference between the variance adjusted synthetic
data and model data (black)
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Figure 18: Cumulative frequency distributions of monthly anomalies in four marine grid boxes.
The magenta lines show the original model data, the cyan lines show the three realisations of
the unadjusted synthetic data and the black lines show the three realisations of the variance
adjusted synthetic data.
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Figure 19: (a) Annual average sea surface temperatures from the whole globe for the original
model data (magenta) and three realisations of the synthetic data before (cyan) and after
(black) variance adjustment. (b) Shows the difference between the unadjusted synthetic data
and model data (cyan) and the difference between the variance adjusted synthetic data and
model data (black)
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the true value (see for example Figure 17), es-
pecially at times when such adjustments are
large. This is notable, for example, during the
second world war or early in the record. The
frequencies of individual grid-box monthly av-
erages are also typically improved (see for ex-
ample Figure 18) with extreme outliers due to
noise being effectively adjusted. This means
that it is possible to make more meaningful
analyses of the occurrences of true extremes
using the variance adjusted data. However,
when these individual variance-adjusted grid-
box values are averaged over large regions (Fig-
ure 19), the opposite is true. Whereas the ran-
dom errors of individual grid boxes tend to can-
cel out when averaged, the cumulative effect of
the hundreds of slight, but correlated, variance
adjustments is to reduce the variance of the re-
gional average.

Some degradation of the true temperature
signal is inevitable, as no filter can perfectly
separate out the measurement and sampling
error component of the temperature signal,
and the reduction applied to the noise compo-
nent will then be applied to some of the signal
as well. Despite this, the variance adjustment
process is very successful at the grid-box scale.
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