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ABSTRACT

Long-term observational data are essential for understanding local and regional climate and climate change. These data are
also important for hydrological designs and agricultural decision making. This study examined the daily meteorological
data from 726 stations in China from 1951 to 2000, and developed an unprecedented climatic dataset that contains 10
daily variables: maximum and minimum surface air temperatures, mean surface air temperature, skin surface temperature,
surface air relative humidity, wind speed, wind gust, sunshine duration hours, precipitation, and pan evaporation. The
characteristics of the original stations’ data and quality-control methods designed and used in developing this dataset
are detailed. The quality-control procedures identified less than 0.05% of the data records as being erroneous because
of typos and incorrect units, reading, or data coding. When the spatial and temporal consistency of the variables’ time
series were inspected, nearly 37.9% of the stations were found to have one or more variables with inconsistent changes.
The sources causing the temporal inconsistency/discontinuity were evaluated, and a method was developed and applied
to adjust those data segments containing inconsistent values. The resulting data series, as an alternative to the original
quality-controlled series, showed both spatially and temporally consistent trends in the occurrence frequency of extreme
climate events compared with the unadjusted data series. Finally, the quality-controlled daily data were gridded to a
1.0°×1.0° grid system covering China after the erroneous and missing data were estimated. This new dataset opens up
opportunities for analysing and understanding the climate variability and climate change in China. Copyright  2004
Royal Meteorological Society.
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1. INTRODUCTION

Climate data are essential to our effort to identify and understand variations and changes of regional and global
climate. Near-surface observations and radiosonde data also both provide the ‘ground truth’ for evaluating
various remote sensing techniques and sensors, and for validating numerical model simulations. In recent
years, the integration of the observation data and modelled data via assimilation techniques has yielded a
new generation of datasets for advanced research purposes, e.g. the National Centers for Environmental
Prediction–National Center for Atmospheric Research reanalysis data (Kalnay et al., 1996). These needs for
climate data, in addition to applications of the data in local agriculture and water resources planning, have
been propelling the development of quality datasets from ground and radiosonde observations, despite the
recent multiple downsizes of many observation networks, such as those in the USA and Canada. As a result,
daily and hourly datasets of various meteorological variables have been developed for many countries and
regions in the world (Peterson et al., 1997; Manton et al., 2001; Klein Tank et al., 2002; Vincent et al., 2002).

* Correspondence to: Qi Hu, 237 L.W. Chase Hall, School of Natural Resource Sciences, University of Nebraska-Lincoln, Lincoln, NE
68583-0728, USA; e-mail: qhu2@unl.edu

Copyright  2004 Royal Meteorological Society



854 S. FENG, Q. HU AND W. QIAN

Recently, a global daily meteorological dataset has been developed at the US National Climatic Data Center
(NCDC; Gleason, 2002). In this global daily meteorological dataset, there are surface air temperature and
precipitation data from 1951 to the 1990s at 196 stations in China (Gleason, 2002). This number is a small
portion of the total number of stations in China (726) that have observation records from 1951 to 2000. In
addition, most of those stations have measurements of other important meteorological variables, such as daily
mean skin surface temperature (Ts; i.e. the temperature measured by a thermometer lying on bare ground,
on top of a snow surface, or on a vegetation surface if it covers the ground, which is rather unique in the
Chinese observing system), relative humidity (RH), wind speed Ws, wing gust Wg, sunshine duration hours
(SS), and pan evaporation (PE). It is desirable to include the temperature and precipitation observations from
the additional stations in the global dataset and, moreover, to establish a complete climate dataset not only
of the conventional temperature and precipitation, but also of the other meteorological parameters for China
for the period 1951–2000. To achieve the latter is the goal of this study.

This article summarizes the quality-control methods designed and applied to various data at 726 stations
in China (Figure 1(a)) and describes a dataset of an array of meteorological parameters that will provide an
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Figure 1. (a) Geographical distribution of the 726 meteorological stations in China (dots). Open circle indicates stations that have one
of more variables identified with inhomogeneity. (b) Variation of the number of stations that have measurements for each variable
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unprecedented resource for analysis and research of climate and climate change in China. The data sources and
station characteristics are outlined in Section 2. Section 3 describes the quality-control methods. A method
for checking consistency of daily data and methods to correct data errors caused by station moves and sensor
upgrades are described in Section 4. In Section 5, we describe a gridded dataset derived after interpolation
of the quality-controlled stations’ data to a 1.0° × 1.0° mesh covering China. Section 6 contains a summary
and discussions of the uniqueness and advantages of the new datasets.

2. DATA

Daily data are obtained from the Chinese National Meteorological Centre (CNMC). These data are
observations of 10 variables: daily maximum surface air temperature Tx, daily minimum surface air
temperature Tn, daily mean surface air temperature Td, daily total precipitation Pr, and the variables previously
mentioned, i.e. Ts, RH, Ws, Wg, SS, and PE. Except for PE, which was measured in the period from 1 January
1951 to 31 December 1998, all variables are measured from 1 January 1951 to 31 December 2000. The
standards of measurement instruments, except for PE sensors, have been outlined in Tao et al. (1991) and
Kaiser et al. (1993), and are not repeated here. For PE, two kinds of evaporimeter were used in China. The
PE presented in this study was measured by an evaporimeter with dimensions of 20 cm diameter and 10 cm
height. The evaporimeter was placed on grass, measuring evaporation in a vegetation environment, similar
to the Class-A PE measurement in the USA (Allen et al., 1998). (Because of the difference in dimensions of
the evaporation pans, measurements from the evaporimeter are expected to be different from the Class-A PE
measurements. Their differences have never been carefully examined, however.)

The geographical distribution of the 726 stations is shown in Figure 1(a). The stations are fairly evenly
distributed in the plains east of the 95 °E longitude. The distance between the stations increases and the
coverage becomes coarser in the western and northern parts of China. A large void exists in the western
Tibetan Plateau and the Tarim basin in Xinjiang province (the largest desert region in China). Although the
number of stations in service has changed over the years, the total number of stations that measure Td, Tx, Tn,
Ts, SS, Ws and Pr has remained at about 726 after the network was established around 1958 (Figure 1(b)).
The stations that measured the additional variables do vary, however. As shown in Figure 1(b), the number
of stations measuring Ts, PE, and Wg has changed considerably, but has remained stable since 1980. There
were very few stations having wind gust measurements prior to 1971. A change in 1971 has since upgraded
the wind gust measurements.

3. QUALITY CONTROL

In this section, we describe the quality control and assurance that are designed and applied to identify erroneous
data resulting from sensors and observation sources.

3.1. High–low extreme check for daily values

This method compares daily values of various variables from individual stations with established extreme
values. Specifically, we use the temperature extremes defined by Kubecka (2001) and Gleason (2002) to check
stations’ daily temperatures, and we use the precipitation extremes given in Gleason (2002) to compare the
stations’ daily precipitation amounts. The wind-speed extremes are from Meek and Hatfield (1994), and the
extremes for RH and PE are from the CNMC. For sunshine duration hours, we use zero for the low extreme
and calculate the high extremes using the following equation (Allen et al. 1994):

H = 24

π
× arccos(− tan φ tan δ) 0 ≤ H ≤ 24 (1)

where δ = 0.409 sin(0.0172J − 1.39) is the solar inclination angle, in which J is the day of the year, with
J = 1 being 1 January. In Equation (1), H is the maximum day length (hours) on day J , φ is the latitude
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of the station. Note that the calculated maximum day length is slightly different depending on the methods
used (see Forsythe et al. (1995)).

These extreme values for each variable are summarized in Table I. Data values greater than (less than) the
highest (lowest) values listed in Table I are flagged and are not used in subsequent quality-control calculations.
The total number of errors from this check for the various variables is given in Table II. Among the list,
Ts and SS have large numbers of flagged data from this check. For Ts, one source for such a large number
of erroneous data has been incorrect coding of the data. This was particularly serious at several stations in
northeastern China and the Tibetan Plateau during the winter season. A large number of erroneous data in SS
also arose at a few stations.

3.2. Internal consistency check

Reek et al. (1992) outlined eight rules to identify erroneous data of air temperature and precipitation. They
concluded that the errors are due to data reporting and digitizing, typos, unit differences, and the use of
different based values in data reporting. In this study, we used three of their rules to check the daily data:
(1) internal inconsistency, which identifies errors such as daily Tx being cooler than Tn, that the daily Td

is larger than Tx or less than Tn, and that daily Ws is larger than Wg; (2) excess diurnal temperature range
check, which identifies errors with extraordinarily large daily temperature range (Tx − Tn) while Tx and Tn

are within their reasonable ranges; and (3) a ‘flat line’ check, which identifies data of the same value for
at least seven consecutive days (not applied to zero precipitation data). All the identified erroneous data are

Table I. High/low values used as extreme values of different variables

Variable High Low Source

Mean surface air temperature Td 93.9 °C −89.4 °C Kubecka (2001), Gleason (2002)
Maximum air temperature Tx 93.9 °C −89.4 °C Kubecka (2001), Gleason (2002)
Minimum air temperature Tn 93.9 °C −89.4 °C Kubecka (2001), Gleason (2002)
Mean skin surface temperature Ts 93.9 °C −89.4 °C Kubecka (2001), Gleason (2002)
Precipitation Pr 1828.8 mm 0 mm Gleason (2002)
Sunshine duration (SS) H 0h Allen et al. (1994)
Wind speed Ws 45 m/s 0 m/s Meek and Hatfield (1994)
Wind gust Wg 100 m/s 0 m/s Possible extremes
Relative humidity (RH) 100% 0% Physical constraints
Pan evaporation (PE) 500 mm 0 mm CNMC

Table II. Percentages of erroneous and suspected data by categories. The total values are the sum of high/low extremes,
internal consistency, spatial outlier, and temporal outliers that are larger than 5 BSD

High/low Internal Temporal outliers (%) Spatial Total (%)
extremes (%) consistency (%) outliers (%)

>5 BSD >4 BSD >3 BSD

Td 0.0 0.00 048 0.010 0.042 0.375 0.0028 0.0133
Tx 0.0 00 035 0.00 073 0.016 0.052 0.393 0.0068 0.0236
Tn 0.0 00 009 0.00 021 0.012 0.046 0.365 0.0084 0.0206
Ts 0.0031 0.00 253 0.019 0.056 0.038 0.0064 0.0310
Pr 0.0 0.00 594 — — — 0.0213 0.0272
SS 0.0094 0.90 931 — — — 0.0319 0.9506
Ws 0.0 0.00 339 — — — 0.0764 0.0798
Wg 0.00 036 0.00 177 — — — 0.0133 0.0155
RH 0.0 0.00 390 — — — 0.0168 0.0207
PE 0.0 0.01 879 — — — 0.0730 0.0918
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flagged. For erroneous data detected by the ‘flat line’ check, all the consecutive data are flagged as suspect
values, except the first value. These rules are applied to individual station daily observations and the total
numbers of suspected values are shown in the third column of Table II. It is evident from Table II that the SS
and PE have many more errors identified from these checks than the other variables. (The large number of
erroneous data of SS was suggested to be attributed to the fact that the SS measurement is a rather subjective
matter of interpreting the burnt traces on the measurement cards, especially when the sun is out briefly and
intermittently. Each observer makes somewhat different assessments. Additional errors also arise if the glass
sphere of the recording device is not aligned precisely with the cards, or if the instrument is not well exposed
and lacks a clear view of the sun.)

3.3. Temporal outliers check

The above checks identified some obvious erroneous values in the data series, but they cannot detect outliers
that have the following problems: (1) where data values are much larger (or smaller) than neighbouring values
but are not larger than the threshold for being detected by the consistency check; (2) where data create a
large step change from the previous daily value(s). To identify these outliers, we use Lanzante’s (1996)
biweight mean and biweight standard deviation method. The biweight estimate is a weighted average such
that weighting decreases away from the centre of the distribution. This method has also been used in Gleason
(2002). According to Gleason (2002), we use the data from the day before and after the day having the
suspect value of the current year, and the day before, after, and on the day from all other years in the same
station to create a new time series Xi . For example, X for 6 June 1988 for a station with 50 years of data
(1951–2000) would consist of the following daily observations: 5–7 June 1951–87; 5 and 7 June 1988; and
5–7 June 1989–2000. After we obtain the Xi series, the median M and absolute deviation from the median
(MAD) are estimated. (The MAD is the median of the absolute deviations of the values from the median.)
From the MAD, the weights ui are calculated using

ui = Xi − M

c × MAD
(2)

where c is a constant; c represents a ‘censor’ value, such that all observations beyond a certain critical distance
from c are given zero weight. The censor value of 7.5 used by Lanzante (1996) is also applied in this study.
In addition, we set ui = 1.0 for any |ui | > 1.0 to accomplish the censoring (Lanzante, 1996). With ui , the
biweight mean is estimated using

Xbi = M +

n∑
i=1

(Xi − M)(1 − u2
i )

2

n∑
i=1

(1 − u2
i )

2

(3)

and the biweight estimate of the standard deviation is

sbi =

[
n

n∑
i=1

(Xi − M)2(1 − u2
i )

4

]0.5

∣∣∣∣∣
n∑

i=1

(1 − u2
i )(1 − 5u2

i )

∣∣∣∣∣
(4)

Both Xbi and sbi are more heavily weighted towards the centre of their distributions than the wings or tails.
Thus, they are more resistant to outlier values and provide a more robust estimation of mean and standard
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deviation than traditional statistical methods, which apply equal weight throughout the distribution (Lanzante,
1996). The Xbi and sbi are used to determine the Z-score of a particular day’s observation using

Z = |Xo − Xbi|
sbi

(5)

where Xo is the observed value. The Z-score values greater than or equal to three, four, or five biweight
standard deviations (BSDs) from the biweight mean are classified with different flags to indicate different
degrees of suspicion. According to Lanzante (1996), unless the sample size of Xi is at least 11 (18), it is
not possible to obtain Z > 3(>4). Therefore, all stations for which this type of outlier check is performed
required at least 10 years of data with adequate numbers of observations centred at the date of a suspected
value. Figure 2 shows the outliers identified from this method for a station in the Tibetan Plateau. All the
flagged values with Z > 3 BSDs are much smaller (or larger) than the values collectively showing the annual
cycle in the figure. The results in Figure 2 and the numbers given in the sixth column in Table II also indicate
that a larger number of values are flagged when we use the criterion Z ≥ 3 BSDs. Because Z > 5 BSDs
indicates a data value that is 10 to 20 °C warmer or colder than the collective annual cycle (Figure 2), we use
the criterion Z ≥ 5 BSDs for all the data. However, the results indicate that this method is only applicable to
the temperature data (Td, Tx, Tn and Ts). The percentage of outliers in the data identified using this criterion
is given in the fourth column in Table II.

3.4. Spatial outliers check

This method detects the outliers by comparing the data of neighbouring stations. Correlation coefficients R

are computed for each month between daily data at a station (candidate station) and the 10 nearest stations.
The minimum criterion is that R be significant at the 95% confidence level. Stations with large positive
R are used to create their linear regression for the same variable between neighbouring stations and the
candidate station. The root-mean-square error (RMSE) of the regressions is also computed. If more than five
neighbouring stations have significant correlation with the candidate station at a specific month, than the five
neighbouring stations with the lowest RMSE are chosen. After having N (N ≤ 5) regression equations, we
assign a daily value Vi of a variable to be suspicious if it falls outside the specified confidence intervals for
all N pairs of stations (Hubbard, 2001):

VFij − F × RMSEj < Vi < VFij + F × RMSEj (6)

where j = 1, . . . , N is the number of neighbouring stations, i = 1, . . . ,m, is the specific day in a month and
m is the total number of days of that month, Vi is the data at the candidate station for day i, VFij is the fitted
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Figure 2. Temporal outliers of Tn identified for station 55 664 (28.63°N, 87.08°E) in the Tibetan Plateau
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value by linear regression of neighbouring station j for day i, and F defines the desired confidence limit. In
the present study, F = 5 for Pr and Wg and F = 3 for the other variables. The percentage of data failing this
check for each variable is listed in the seventh column in Table II, and shows that less than 0.077% of the
data were flagged from this check.

The total percentage of the suspicious or erroneous data identified from these previous four checks are
shown in the last column of Table II. Except for SS, the daily data in China have high quality for most of
the variables, which is comparable to that for the USA (Reek et al., 1992).

3.5. Missing data

In our calculations of monthly values, the missing data (or data gaps) can induce temporal and spatial
errors (Stooksbury et al., 1999). Efforts have been made by some researchers to fill the missing data and
correct the erroneous data before calculating the monthly mean (Eischeid et al., 2000; Hubbard, 2001). In the
present study, the suspicious data screened by the four previous checks and missing data are estimated using
the following method (Hubbard, 2001)

vei =
N∑

j=1

[
VFij × RMSE−2

j

] / N∑
j=1

RMSE−2
j (7)

where vei is the estimated value and the other symbols are the same as in Equation (6).
We should point out that the number of neighbouring stations used in Equations (6) and (7) is not fixed

in time. The number varies depending on the availability of station data for the year/month in question.
Accordingly, the regression models also change in time. Moreover, the surrounding stations that may be
optimal for a particular calendar month (e.g. January) may not be optimal for a different month (e.g. July).
Thus, the spatial outlier check and estimation of missing data are constructed and applied for individual
calendar months.

4. HOMOGENEITY CHECK AND HOMOGENIZATION

Yan et al. (2001) used individual stations’ metadata and showed sudden changes of the mean temperature at
two weather stations in China after their geographical locations changed. Similar changes are expected in this
dataset for stations that have experienced location changes and/or sensor upgrades. These changes could have
created erroneous trends or amplitudes of daily or monthly variations of temperature, for example, and must
be identified and their corrections estimated. An ideal way to accomplish this task is to use the individual
station’s metadata that record the move and sensor changes. After identifying those changes we can compare
the temporal variations of the data at the same station and the variations with that at neighbouring stations and
examine the effect of a location move on the station’s data homogeneity (‘homogeneity’ means that variations
in the data have a consistent ‘tempo’). However, there is very little metadata available for the stations in
China: only 60 out of the 726 stations (Tao et al., 1991; Kaiser et al., 1993). Thus, alternative subjective and
objective methods are needed. Numerous methods have been used to evaluate the homogeneity of monthly
and annual climate data series (Jones et al., 1986; Folland and Parker, 1995). A comprehensive review on
those methods is given in Peterson et al. (1998). In China, Wang and Gaffen (2001) used subjective visual
inspections to identify data inhomogeneities. Feng (1999) used three statistical methods, i.e. moving t-test
(Peterson et al., 1998), standard normal homogeneity test (Alexandersson, 1986), and departure accumulating
method (Buishand, 1982) to check the homogeneity of the data series. His results compared favourably at
stations with metadata information in western China. Because such a combination of statistical methods is
often considered most effective to uncover data inhomogeneity (Wijngaard et al., 2003), we use these three
objective statistical methods to check the homogeneity in this work.
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4.1. Create the reference series

A change in a station’s time series may indicate inhomogeneity, but it may also simply be a result of
an abrupt change in the region’s climate (Peterson et al., 1998). To isolate the effect of station change
from regional climate change on data homogeneity, several techniques have been introduced. Most of these
techniques use data from nearby stations to establish a descriptor of the regional climate (reference time
series). In this study, the technique proposed by Peterson and Easterling (1994) is used to create the annual
reference time series. In doing so, the difference series of a variable, e.g. for V, FDi = Vi+1 − Vi for the
ith year is created and the mean of the central three FD values of the five closest neighbouring stations is
used to create the difference reference series. (This procedure is designed under the belief that if there is a
significant discontinuity in one of the five stations in a year, then that station would most likely have the
highest or lowest FD value.) The difference series is then transformed into a new time series using V1 = 0;
Vi+1 = Vi + FDi . This new time series is further adjusted so that the final year’s value of the series is equal
to the final year’s value of the candidate series. After this adjustment, we obtain the station’s reference time
series. This method has been used for both temperature (Peterson and Easterling, 1994) and PE time series
(Lawrimore and Peterson, 2000), and is adapted in this study to create the reference series of all the variables.
The annual average value of each variable, except for precipitation, is used directly to create its reference
time series. For precipitation, we first normalized it and then create its normalized reference time series. The
reference series of precipitation is obtained by taking the product of S1 and S2, where S1 is the standard
deviation of the annual total precipitation at the candidate station and S2 is its normalized reference time
series.

4.2. Homogeneity check

The reference time series are used in checking the data homogeneity for individual variables. In this
procedure, a time series Y is computed for a variable with Yi being the difference between the candidate
station data value and its reference value. For precipitation, Yi represents the ratio of the candidate station
data and its reference value. The three statistical methods used in Feng (1999) are applied to test the Y series.
If Y has a big jump in year p and rejects the null hypothesis of no jump at the 99% confidence level, then
the target station is suspected to be inhomogeneous in year p. In this study, a station’s data are considered
suspect when all three of the statistical tests reject the null hypothesis at the 99% confidence level.

The results of the three tests applied to station 53 564 (39.38 °N, 111.15 °E, see Figure 1) are shown in
Figure 3 with the annual values of Td, Tx, Tn, RH, PE, Ws, and Wg and their reference and Y series. A sudden
change in 1973–74 is clearly shown in all the variables except for Wg. The failure of the statistical tests to
find the change in Wg is mainly because the change occurred near the beginning of the Wg time series (see
the last two panels in Figure. 3). The station’s metadata suggested that the station was moved from a location
at 39.28 °N, 111.27 °E to a site at 39.38 °N, 111.15 °E on 1 January 1974, a record consistent with the abrupt
change in the station’s data. The relocation apparently had a stronger effect on Tn than on Tx, as depicted by
the larger differences between Tn and its reference time series in Figure. 3. The effect is also weak on Td,
and nearly diminishes on Ts (Figure 4). Figure 4 also suggests a small effect of the relocation in 1974 on Pr

and SS. This weak effect on SS may be attributed to the latitude of the station changing by only 10′ in the
relocation, because SS is a heavy function of a station’s latitude; see Equation (1). The small effect on Pr

could be partially attributed to the fact that Pr has large seasonal and interannual variations, which may have
shadowed Pr changes caused by the relocation.

Because the three statistical methods used in the procedure have different sensitivities to different changes
in a station’s data series, the test results from these methods sometimes have discrepancies. For example, two
methods may suggest an abrupt change at a time in the data series but the third may show little support for
such a change. Similar problems were also reported with other methods (Wijngaard et al., 2003). To resolve
this uncertainty without a station’s metadata, we visually evaluate the data series from those stations with
‘disputed’ results from the three statistical methods and subjectively decide whether the changes detected in
the data series have occurred. This hybrid testing method allowed us to detect even small effects of a station’s
relocation and other changes on the data series homogeneity, albeit that not all effects from changes of similar
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Figure 3. Variations of measured (thick line), reference (dash line), and the Y series of Td, Tx, Tn, RH, PE, Ws, and Wg for station
53 564 (39.38°N, 111.15°E). An interruption in the homogeneity in 1973 is shown in each variable at the station

sorts at a station could be detected with certainty. The total number (also in percentage) of stations whose
data were found having inhomogeneities in the variables is given in Table III. Up to 11.4% of stations have
inhomogeneities in their Td, Tx, Tn, Ws, and PE data. Overall, nearly 37.9% of the stations have one or more
variables suffering abrupt changes.

In Table III, many stations that have inhomogeneities in other variables do not show a similar inhomogeneity
in Wg. Besides the relatively short Wg observations compared with the other variables (Figures 3 and 4), this
difference may suggest a large-scale feature of strong wind in those regions where the Wg showed no change
from relocation of stations. Additionally, precipitation is also less sensitive to station relocation and sensor
upgrade than temperature, a result consistent with the high variability in precipitation (Wijngaard et al., 2003).

4.3. Homogenization

When a station’s data are identified as inhomogeneous, that station’s data series then becomes questionable
or invalid for trend and variability analysis. Given that, overall, 37.9% of the station’s data series have
inhomogeneities, it is desirable to ‘remove’ the abrupt changes so that the data series could be useful, or have

Table III. Number and percentage of stations with identified inhomogeneity for each variable

Td Tx Tn Ts Pr RH SS Ws Wg PE

Number 77 66 82 30 12 57 21 83 7 65
Percentage 10.6 9.1 11.3 4.1 1.7 7.9 2.9 11.4 1 9.0
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Figure 4. Variation of measured (thick line), reference (dash line), and the Y series of Pr, SS, and Ts for station 53 564

some reference value, to climate studies in China. We note that this effort is to ‘rescue’ some station’s data
for potential use in research and is not intended to create a new data series. In the dataset, these data are
presented separately from the original data series, with flags showing the abrupt changes and inhomogeneity.

An ideal ‘rescue’ method is to assess each cause of the abrupt change in the data series and quantify its
effect on daily data after the abrupt change (Yan et al., 2001). Lacking adequate metadata often makes this
method impractical, however. In this study, we use the method outlined in Vincent et al. (2002) to minimize
the inhomogeneity in the data series (except for Pr and Wg). When a station’s data series has inhomogeneity,
the five nearest neighbouring stations with homogeneous data are selected to create a reference series for each
month using the method outlined in Section 4.1. Then, Vincent et al.’s (2002) method is used to compute a
monthly adjustment for a variable

VMi = a + bI + cVRi + e i = 1, . . . , N (8)

where I = 0 for i = 1, . . . , p, and I = 1 for i = p + 1, . . ., N; p is the year when an abrupt change occurred
and N is the total number of years in the data. In Equation (8), VMi and VRi are the monthly observations
at the target station (which has the inhomogeneity) and the reference series respectively. The coefficients
a, b, and c are determined statistically. Monthly corrections are obtained by applying Equation (8) to time
series of the 12 individual months. The monthly corrections so obtained correspond to the magnitude given
by the parameter b for each month. As an example, the monthly corrections for Tx, Tn, Ws, and RH of station
53 564 are shown in Figure 5. For these variables, the corrections vary from month to month. They also vary
between variables, indicating different environment conditions at the locales of the station.

According to Vincent et al. (2002), the daily adjustments can be derived from the monthly corrections
using a linear interpolation between midmonth ‘target’ values that are objectively chosen so that the average
of the daily adjustments over a given month is equal to the monthly correction. The ‘target’ values are related
to the monthly correction by the following matrix relationship (Vincent et al., 2002):

T = A−1M (9)
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Figure 5. Monthly (bars) and daily (lines) adjustments for Tn, Tx, Ws, and RH for station 53 564

where T is a 12 × 1 vector consisting of the target values, M is a 12 × 1 vector consisting of monthly
corrections, and A is a tridiagonal 12 × 12 matrix:

A =

∣∣∣∣∣∣∣∣∣

7/8 1/8
1/8 6/8 1/8

. . .

1/8 6/8 1/8
1/8 7/8

∣∣∣∣∣∣∣∣∣
The target values obtained by Equation (9) are assigned to the middle day in each month and are then
linearly interpolated to obtain the daily adjustments in the month. In this procedure, the average of the
daily adjustments over a given month is equated to the monthly correction. As shown in Figure 5, the daily
adjustments (the solid line) have captured well the monthly corrections for Tx and Tn. Figure 5 also shows
the daily adjustments for Ws and RH. By capturing the monthly corrections, these results suggest that Vincent
et al.’s (2002) daily adjustment method is not only accurate for daily temperature adjustment, but is also
accurate for other variables such as SS, PE, Ws, and RH.

After calculating the daily adjustments we added them to the daily values before the year with the abrupt
change, i.e. year p (correcting to the current station’s environment). During the adjustment, we also make the
following adjustments: when a new daily value of SS, PE, Ws, or RH is less than zero, it is set to zero; when
RH is larger than 100% it is set to equal to 100%; excessive values of SS are set to the possible maximum
duration hours.

4.4. Impact of the adjustments on calculated climate trend

While removing the abrupt changes in a data series, the adjustment procedures could also have introduced
errors to the adjusted data series, because the adjustment procedures are not necessarily describing the actual
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changes. Potential errors induced by the daily adjustments have been discussed by Vincent et al. (2002). Their
results from comparisons of unadjusted and adjusted daily temperatures from stations in Canada showed that
the adjustments improve the data consistency: ‘The adjusted daily temperatures were closer to the actual
observations and exerted little effect on the temperature standard deviation’. The adjusted series also show
frequency and distribution of temperature extremes closer to the observed than the unadjusted data series.
In this section, we show the differences of trend in frequency and extreme weather events, e.g. severe cold
days, windy days, and high-humidity days, between the estimated and the original data series. Our purpose is
to illustrate the improvement by the homogeneity adjustment to the data at stations that experienced abrupt
changes, and should not be understood as an encouragement for use of the adjusted data in any means. Such
a decision is left for the users.

The seasonal trends in the occurrence frequency of severe cold days, windy days, and high-humidity days in
1958–2000 is shown in Figures 6–8 for the stations whose data have inhomogeneities and have been adjusted.
The number of severe cold days (or cool days in summer) in each year is determined by the percentage of
days with Tn colder than the 5th percentile of the period 1961–90, and the number of windy days and high-
humidity days is determined by the percentage of days with Ws and RH respectively higher than the 95th
percentile. Comparisons of each pair of the panels in Figures 6–8 indicate rather random trends in changes
of those variables in the unadjusted data. Large trends of opposite changes are observed at stations next to
each other, suggesting spatial inconsistency of the data at those stations. Such inconsistency is not seen in
the distribution of the adjusted trend. The adjusted data show positive trends in numbers of cold days during
winter and spring (Figure 6), a result consistent with large winter warming in China (Qian et al., 2001). In
summer, a rising trend in the numbers of cool days appears in the east Tibetan Plateau and the middle and
lower reaches of the Yangtze River valley. These changes are in agreement with a cooling trend in summer
minimum temperatures (Shen and Varis, 2001). In Figure 7, the adjusted data for windy days show a trend of
decreasing number of windy days in recent decades, except for the Tibetan Plateau. The decreased number of
windy days in summer is consistent with the weakening seasonal mean southerly winds since the late 1970s
found by Qian and Zhu (2001). Figure 8 shows a trend of an increasing number of summer high-humidity
days in the Yangtze River valley and a decreasing trend in northern China, suggesting a wetter climate in the
Yangtze River valley and drier conditions in northern China (Hu and Feng, 2001).

These improvements in describing the trends of various meteorological parameters and variables by the
quality-controlled data (Figures 6–8) can be attributed largely to the fact that the quality controls have
improved the continuity and consistency of the data series, after removing the erroneous data and replacing
them with the estimates obtained under the constraint of maintaining the continuity in the natural variations
of those parameters.

5. A GRIDDED DATASET

Because gridded daily datasets are easy to use for climate research and for applications in management and
decision making, we develop a gridded daily dataset from the quality-controlled and adjusted stations’ data
for 1951–2000. Average data values of the variables in each 1.0° latitude × 1.0° longitude box are calculated
using a modified Cressman (1959) scheme (Glahn et al., 1985; Charba et al., 1992). The same scheme was
used in developing the gridded daily temperature and precipitation datasets in the USA (Higgins et al., 1996;
Janowiak et al., 1999), and has been used for similar purposes at the US NOAA Climate Prediction Center.
In applying this scheme, we first estimate daily values at the centre of each 0.5° × 0.5° grid-box and then
take the area-weighted averages of the four 0.5° × 0.5° estimates to obtain the area-mean daily value for each
1.0° × 1.0° box. Because the spatial density of the stations is low in western China, particularly in the west
Tibetan Plateau and the Tarim basin (Figure 1), a 1.0° × 1.0° latitude/longitude box is tenuous in those regions.
As with any objective analysis procedure, our data are smoothed and the analysis bleeds into regions where
no observations exist. Janowiak et al. (1999) demonstrated that the station reporting frequency difference and
missing data might cause a jump (or drop) in gridded data values between grids, especially in mountainous
regions. Therefore, use of the gridded daily data in the Tibetan Plateau should be undertaken with caution.
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Figure 6. Trends in the percentage of days with minimum temperature colder than the 5th percentile value of each season over the
period 1958–2000. The panels on the left show the results before the adjustment and the panels on the right are the counterparts after

the adjustment
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Figure 7. Trends in the percentage of days with daily mean wind speed stronger than the 95th percentile value of each season over the
period 1958–2000. The panels on the left show the results before the adjustment and the panels on the right are the counterparts after

the adjustment
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Figure 8. As for Figure 7, but for daily mean relative humidity
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Nonetheless, as elaborated in Janowiak et al. (1999), such discontinuities should have been minimized in the
gridded dataset because the Cressman (1959) scheme applies information from stations outside of a particular
grid-box when estimating the grid value in that box.

6. SUMMARY

An unprecedented daily meteorological dataset of 1951–2000 is developed for China. The raw data used to
build this dataset are individual stations’ data from 726 stations in China. Each station’s data contain the 10
variables Td, Tx, Tn, Ts, Pr, SS, RH, PE, Ws, and Wg over the period from 1951 to 2000. These stations’ daily
data are examined for consistency in both temporal and spatial variations. Outliers are flagged. A total of
less than 0.05% of the daily values is identified as erroneous and flagged. After the consistency check, three
statistical methods are used to check the inhomogeneity in the data series that may be caused by relocation of
stations and/or sensor problems. Data discontinuities resulting from such interruptions are identified by these
methods, and are confirmed using the stations’ metadata where available. Because of very limited metadata,
a visual inspection is performed to determine data discontinuities when the three statistical methods yield
different and ambiguous results for discontinuities in the data series.

A method developed by Vincent et al. (2002) is modified and used to eliminate the inhomogeneities and
adjust the daily series. Magnitudes of the daily adjustments vary from month to month and from variable to
variable. Comparisons between the unadjusted and adjusted daily series indicate that the general spatial pattern
of trends in the occurrence frequency of extreme events and extreme values is similar, but the data after the
adjustments display consistent details in spatial variations of trends and, thus, provide an improvement to the
dataset. The differences between the adjusted and unadjusted data series also suggest that the Vincent et al.
(2002) method can be applied not only to daily temperatures, but also to other daily meteorological variables.
The adjusted stations’ data are included in the dataset, as an alternative to the quality-controlled data, and a
gridded dataset of 1.0° × 1.0° resolution has been developed using the adjusted data. We understand that the
adjustment may also induce errors in the data, and the decision on whether to use the adjusted data is left for
the users.

One of the unique features of this dataset is that it has more than just the ‘traditional’ climate variables,
i.e. the surface air temperature and precipitation. By including the daily variables of atmospheric humidity,
wind, sunshine duration, and pan evaporation, this dataset opens opportunities for studying various aspects
of climate variability and climate change in China.
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